M346 (92153), Homework \#13
Due: 10:00am, Thursday, Jul. 05

Infinite-dimensional inner product spaces (6.8)

A)
i. Let $\boldsymbol{v}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ with $a_{n}=(-1)^{n} / \sqrt{n}$. Is \boldsymbol{v} in $l_{2}(\mathbb{R})$?
ii. Consider the function $f(x)=1 / x^{p}$. For what $p \geq 0$ is f in $L_{2}([1, \infty))$? For what $p \geq 0$ is f in $L_{2}((0,1])$?

Fourier series (6.9, 8.5, 8.7)

A) Use integration by parts to evaluate the following integrals with constant $k \neq 0$:
i. $\int_{0}^{1} x \sin (k x) d x$
ii. $\int_{0}^{1} x \cos (k x) d x$
iii. $\int_{0}^{1} x \exp (i k x) d x$
[Hint: Use Euler's formula and your answers to (i) and (ii).]
B) Let $f(x)=x$ for $x \in[0,1]$. Use your solutions from problem (A) for the following parts:
i. Write the Fourier sine series for f-that is, write

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x)
$$

by finding the coefficients

$$
c_{n}=2 \int_{0}^{1} f(x) \sin (n \pi x) d x, \quad n \in\{1,2,3, \ldots\} .
$$

How fast do the coefficients c_{n} decay?
ii. Plot $f(x)$ and the approximations $f_{N}(x)=\sum_{n=1}^{N} c_{n} \sin (n \pi x)$ for $N=1,2,3,4$.
C)
i. Derive a solution $u(x, t)$ to the partial differential equation (PDE)

$$
\begin{gathered}
\partial_{t} u=-\partial_{x x} u \\
u(0, t)=0, \quad u(a, t)=0 \\
u(x, 0)=\left\{\begin{array}{cc}
x & \text { if } x<a / 2 \\
a-x & \text { if } x \geq a / 2
\end{array}\right.
\end{gathered}
$$

using Fourier sine series. How does the $n^{\text {th }}$ Fourier coefficient evolve, and what does this imply about the solution $u(x, t)$ for arbitrarily small times $t>0$? Contrast this behavior to that of the solution to the ordinary heat equation $\partial_{t} u=\partial_{x x} u$ discussed in class.
[Note: The equation above is called the backward heat equation because it arises from the ordinary heat equation under the time change $t \rightarrow-t$. It is ill-posed in that it behaves extremely badly for almost all initial conditions $u(x, 0)$.]
ii. Instead, solve the PDE

$$
\begin{gathered}
\partial_{t} u=-\partial_{x x} u-\partial_{x x x x} u \\
u(0, t)=0, \quad u(a, t)=0 \\
u(x, 0)=\left\{\begin{array}{cc}
x & \text { if } x<a / 2 \\
a-x & \text { if } x \geq a / 2
\end{array}\right.
\end{gathered}
$$

using Fourier sine series. Now how does the $n^{\text {th }}$ Fourier coefficient evolve and what does this imply about the solution $u(x, t)$ for small times $t>0$? What happens as $t \rightarrow \infty$? Again, compare this to the ordinary heat equation.
[Note: By adding the term $-\partial_{x x_{x x} u} u$ to the equation, we have dramatically changed its behavior. This term, called a fourth-order regularization, overcomes the ill-posed nature of the term $-\partial_{x x} u$.]

