
















:: Review ::
-State space (set of nodes), probability vectors v \in P (distribution on state space),
stochastic matrix A (entries are transition probabilities for an individual, become proportions
that transition when considering large ensembles by LLN).
-Markov property: transition probabilities only depend on current state, not on history of path
taken to get there. For ex., if fish model modified such that fish will not return to previous
lake right away, not Markov! Models with finite memory can be made Markov by enlarging the
state space.

:: Properties of A (Perron-Frobenius theorem) ::
 (0) A^k is transition matrix. In particular, if x(0) \in P then x(k) = (A^k)x(0) \in P.
 Pf.: A^k has all positive entries and r(A^k) = r(A^{k-1}) = ... = r.

-Progressively draw spectrum with each step.
 (1) A always has eigenvalue 1 (possibly with multiplicity greater than 1). Corresponding
eigenvectors can be normalized to be in P.
 Pf.: rA = r => A^T has eigenvalue 1 => A has eigenvalue 1. *Eigenvector in P not shown.*

 (2) All eigenvalues of A must lie in closed unit disc of C (i.e., A has no eigenvalues of
magnitude greater than 1, or A has spectral radius 1). Corresponding eigenvectors must have
entires sum to 0.
 Pf.: First, A cannot have eigenvalue corresponding to unstable mode since otherwise x(k) -->
\infty, which contradicts (0). Second, (r - rA) = 0 => 0 = (r - rA)\xi = (1 - \lambda)r\xi =>
r\xi = 0.

 (3) If A has all positive entries, then 1 is only eigenvalue on unit circle in C, and has
algebraic multiplicity 1.
 Pf.: See Q3 for proof. *Algebraic multiplicity 1 not shown.*

:: Stationary distributions ::
-Def. Stationary distribution is \pi \in P such that A\pi = \pi.
-We are interested in stationary distributions because they are statistical equilibria of the
system (for example, temperature in a room settles down to a fixed profile that depends on
distance from floor--warmest air on top, coolest on bottom due to gravity). If system is in a
statistically stationary state note that the random state of any one individual is *not* fixed
in time, but the distribution of states is.

Questions:

*Q0: When does a stationary distribution \pi exist?
  A: Always by (1). In fact, if x(k) \to v \in P, must be to a stationary distribution (v =
\pi).
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*Q0: When does a stationary distribution \pi exist?
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\pi).

*Q1: Is \pi unique?
  A: Not necessarily. As we have seen, eigenvalue 1 can have algebraic multiplicity greater
than 1. Counterexample: A = I means every probability vector is a stationary distribution.
Problem is that that two sets of states never communicate with each other (can't get from one
set of states to other). For example, A = [block 1; ... ; block N] also allows for
nonuniqueness. To overcome this, we impose *irreducibility* of A---for each fixed i,j, (A^k)_ij
> 0 for some k (i.e., can eventually get from every state to every other state).

*Q2: If \pi unique, does x(k) = (A^k)x(0) converges to \pi for every x(0)?
  A: Not necessarily. Counterexample: A = [0 1; 1 0]. Then every x(0) \in P besides x(0) =
(1/2, 1/2)^T does not converge. Problem is periodicity. More generally, A = shift of identity
also allows for periodicity, or A transition matrix of periodic random walk on even number of
states. To overcome this, need *aperiodicity* of A---for each fixed i, there is a K such that
(A^k)_ii > 0 for all k \geq K (i.e., returns to state i do not form a rigid pattern).

-Picture: Venn diagram. Irreducibility (uniqueness of \pi) \cap aperiodicity (convergence) =
regularity (convergence to unique stationary distribution \pi). To deal with Q1, Q2, we impose
irreducibility and aperiodicity. Equivalently, this is the condition of *regularity* of
transition matrix.
-Def. A is regular if for some K \geq 1, A^K has all entries strictly positive (that is, all
states communicate in at most K steps). Then A^k has positive entries for all k \geq K. Can
show that A is regular iff it is irreducible and aperiodic (HW problem).

-Theorem. For regular A, we have a unique \pi to which every initial state converges. In
addition, A^k converges to (\pi ... \pi).
Pf.: Assuming A regular with K = 1 WLOG, uniqueness and convergence by (1)-(3). Consider x(0) =
e_i for each i to get A^k --> (\pi ... \pi).

*Q3: If A regular, how to find \pi? How fast does algorithm converge?
  A: Power method. Start with any initial condition x(0), and evolve. Converges at rate given
by second eigenvalue \lambda_2. For a regular matrix A with K = 1, this can be estimated by
|\lambda_2| \leq (1 - n*min(A)) (in general, one has |\lambda_2|^K \leq (1 - n*min(A))).
Pf.: Eigenvector v corresponding to \lambda is also eigenvector of A - min(A)*B = (1 -
n*min(A))\tilde{A} for B = [r ; ... ; r] and \tilde{A} a stochastic matrix. But since \tilde{A}
has all eigenvalues with magnitude less than 1, must have |\lambda| \leq (1 - n*min(A)) < 1. In
particular, this implies that convergence must be at least as fast at (1 - n*min(A))^k.

*Q4: What do these distributional properties about the ensemble imply about any particular
random path?
  A: Ergodicity--long-run time average of any chosen path equals \pi, which is the long-run
ensemble average at a fixed time. In other words, for a regular Markov chain each path is
representative of the entire ensemble. True even for periodic transition matrices (still need
irreducibility in order get a unique \pi).
-Theorem. \lim_{T --> \infty} (1/T)*\sum_1^T x(k) = \pi.
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Pf.: [?]

*Q5: What if we drop irreducibility? Can we still get unique \pi?
  A: Sometimes. For example, A = [1 1; 0 0] is transition matrix for an absorbing Markov chain.
But if we had more than one absorbing state, this wouldn't be true (why?). In fact,
nonuniqueness for stochastic matrices of form A = [I B; 0 C] (absorbing Markov chains with
absorbing states in I), where I has dimension greater than 1.






























