M346 (92153), Sample Final Exam Solutions

1.

a) Consider \mathbb{R}^{3} with the standard inner product. Convert the basis $\mathcal{B}=\left\{(1,2,0)^{T},(3,1,1)^{T}\right.$, $\left.(4,3,-5)^{T}\right\}$ into an orthonormal basis.
Solution: Using Gram-Schmidt, an orthonormal basis is $\mathcal{E}=\left\{\frac{1}{\sqrt{5}}(1,2,0)^{T}, \frac{1}{\sqrt{6}}(2,-1,1)^{T}\right.$, $\left.\frac{1}{\sqrt{30}}(2,-1,-5)^{T}\right\}$. Your answer may be different if the order of vectors in your orthogonalization procedure is different from the obvious one.
b) Find the matrix of the projection P_{W} onto the subspace $W=\operatorname{span}\left\{(1,2,0)^{T},(3,1,1)^{T}\right\}$. Use this to compute $P_{W} \perp \boldsymbol{v}$, where $\boldsymbol{v}=(1,2,3)^{T}$, where W^{\perp} is the orthogonal complement of W (the subspace of all vectors orthogonal to W).

Solution: $P_{W}=P_{\boldsymbol{e}_{1}}+P_{\boldsymbol{e}_{2}}=\left|\boldsymbol{e}_{1}\right\rangle\left\langle\boldsymbol{e}_{1}\right|+\left|\boldsymbol{e}_{2}\right\rangle\left\langle\boldsymbol{e}_{2}\right|=\frac{1}{5}\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0\end{array}\right)+\frac{1}{6}\left(\begin{array}{ccc}4 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 1\end{array}\right)$.
c) On $\mathbb{R}_{2}[t]$ with inner product $\langle p \mid q\rangle=\int_{0}^{2} p(t) q(t) d t$, transform $\left\{1, t, t^{2}\right\}$ into an orthogonal basis (does not need to be orthonormal).

Solution: $\mathcal{D}=\left\{1, t-1, t^{2}-2 t+2 / 3\right\}$.
2.
a) Find the equation of the best line through the points $(1,-4),(2,1)$, and $(3,2)$. Is this line unique?
Solution: Fitting the model $y=c+d x$ we have that $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right)$ and $\boldsymbol{b}=(-4,1,2)^{T}$, so $A^{*} A=\left(\begin{array}{cc}3 & 6 \\ 6 & 14\end{array}\right)$ and $A^{*} \boldsymbol{b}=\binom{-1}{4}$. Solving the normal equation $A^{*} A \boldsymbol{x}_{\mathrm{LS}}=A^{*} \boldsymbol{b}$ gives the unique least-squares solution $\boldsymbol{x}_{\mathrm{LS}}=(-19 / 3,3)^{T}$ so the best line is $y=-19 / 3+3 x$.
b) Let W be the subspace of \mathbb{R}^{3} spanned by $(1,2,3)^{T}$ and $(1,1,1)^{T}$. Find the point in W which lies closest to $(-4,1,2)^{T}$. Justify your answer.

Solution: The closest point to \boldsymbol{b} which lies in $\operatorname{Ran}(A)$ is $A \boldsymbol{x}_{\mathrm{LS}}=(-10 / 3,-1 / 3,8 / 3)^{T}$.
3. Let $A=\left(\begin{array}{cccc}4 & 2 & -2 & 2 \\ 3 & -1 & 2 & -3\end{array}\right)$.
a) What is the rank r of A ?

Solution: $r=2$.
b) Write the singular value decomposition (SVD) of A as a sum of r terms (you do not need to expand your answers as a matrix). [Hint: Remember that the eigenvalues and eigenvectors of $A^{*} A$ and $A A^{*}$ are intimately related! Choose the easiest matrix to work with.]

Solution: We work with $A A^{*}$ since this is a smaller matrix than $A^{*} A$. The eigenvalues of $A A^{*}$ are $\sigma_{1}=2 \sqrt{7}$ and $\sigma_{2}=\sqrt{23}$, with corresponding orthonormal eigenvectors $\boldsymbol{u}_{1}=(1$, $0)^{T}$ and $\boldsymbol{u}_{2}=(0,1)^{T}$. Then $A^{*} A$ has the same eigenvalues with corresponding eigenvectors $\boldsymbol{v}_{1}=\frac{1}{\sigma_{1}} A^{*} \boldsymbol{u}_{1}=\frac{1}{\sqrt{7}}(2,1,-1,1)^{T}$ and $\boldsymbol{v}_{2}=\frac{1}{\sigma_{2}} A^{*} \boldsymbol{u}_{2}=\frac{1}{\sqrt{23}}(3,-1,2,3)^{T}$. So the SVD of A is $A=\sum_{i=1}^{2} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{*}$.
c) Compute the error between A and its best rank-one approximation.

Solution: Since the best rank-one approximation is $A_{1}=\sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{*}$, the approximation error is $\left\|A-A_{1}\right\|=\sqrt{\sigma_{2}^{2}}=\sqrt{23}$ in the Frobenius norm.
4. Consider the symmetric matrix $A=\left(\begin{array}{cc}24 & 7 \\ 7 & -24\end{array}\right)$.
a) Write $A=U D U^{*}$ for an appropriate diagonal matrix D and unitary matrix U.

Solution: $D=\left(\begin{array}{cc}25 & 0 \\ 0 & -25\end{array}\right), U=\frac{1}{5 \sqrt{2}}\left(\begin{array}{cc}7 & 1 \\ 1 & -7\end{array}\right)$.
b) Express $\boldsymbol{x}=(13,9)^{T}$ as a linear combination of the eigenvectors found in part (a).

Solution: $\boldsymbol{x}=5 \sqrt{2}\left(2 \boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right)$ where $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$ are the columns of U.
c) Let $|A|=U|D| U^{*}$, where $|D|$ is the diagonal matrix of magnitudes of the eigenvalues of A. Show that $|A|$ is positive and compute $\sqrt{|A|}$.
Solution: $|A|=U|D| U^{*}$ with $|D|=\left(\begin{array}{cc}25 & 0 \\ 0 & 25\end{array}\right)$. It is easy to see that $|A|$ is self adjoint and has nonnegative eigenvalues, and is therefore positive. Then we have that $\sqrt{|A|}=$ $U|D|^{1 / 2} U^{*}=\frac{1}{50}\left(\begin{array}{cc}7 & 1 \\ 1 & -7\end{array}\right)\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)\left(\begin{array}{cc}7 & 1 \\ 1 & -7\end{array}\right)=\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$.
5. True or false? Justify your answers.
a) The matrix $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$ has orthogonal eigenvectors.

Solution: True. This holds by the spectral theorem since the matrix is normal.
b) $\frac{1}{\sqrt{7}}\left(\begin{array}{cc}2-i & -1+i \\ 1+i & 2+i\end{array}\right)$ is unitary.

Solution: True. The columns of the matrix are orthonormal.
c) If a matrix $A \in M_{n, n}(\mathbb{C})$ satisfies $A=A^{T}$ then the eigenvalues of A are necessarily real.

Solution: False. If the entries are complex then this does not necessarily hold.
d) If $\langle f \mid g\rangle=\int_{0}^{\infty} f(x) g(x) e^{-x} d x$ for functions $f, g \in L_{2}([0, \infty))$ and $L=x+\frac{d}{d x}$ (assume that all elements of $L_{2}([0, \infty))$ are differentiable), its adjoint is $L^{*}=x-\frac{d}{d x}$.
Solution: False. Integration by parts shows that the adjoint is actually $L^{*}=(x+1)-\frac{d}{d x}$.
i. For which $z \in \mathbb{R}$ is the sequence $\boldsymbol{v}=\left(a_{1}, a_{2}, a_{3}, \ldots\right), a_{n}=z^{n}$, in $l_{2}(\mathbb{R})$? Why?

Solution: Since $\|\boldsymbol{v}\|_{l_{2}(\mathbb{R})}^{2}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}=\sum_{n=1}^{\infty}|z|^{2}$, the series converges if and only if $|z|<1$ (geometric series).
ii. For which $p \geq 0$ is the sequence $\boldsymbol{v}=\left(a_{1}, a_{2}, a_{3}, \ldots\right), a_{n}=\left(2+n^{p}\right)^{-1}$, in $l_{2}(\mathbb{R})$? Why?

Solution: Since $\|\boldsymbol{v}\|_{l_{2}(\mathbb{R})}^{2}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}=\sum_{n=1}^{\infty}\left|\frac{1}{2+n^{p}}\right|^{2}$, the series converges if and only if $p>1 / 2$ by the limit comparison test for infinite series.
7. Compute the Fourier sine series of the function $f(x)=\cos (\pi x)$ on the interval [0,1]. [Hint: Use the trigonometric identity $2 \sin (u) \cos (v)=\sin (u+v)+\sin (u-v)$, if needed.]

Solution: $\cos (\pi x)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x)$, where $c_{n}=\frac{2 n}{\pi}\left[\frac{1+(-1)^{n}}{n^{2}-1}\right]$.
8. Using Fourier sine series, find the solution $u(x, t)$ to the time-dependent Schrodinger equation for a free particle in a 1-dimensional box:

$$
\left\{\begin{array}{c}
\partial_{t} u=i \partial_{x x} u \\
u(0, t)=0, u(a, t)=0, \quad x \in[0, a], t \geq 0 . \\
u(x, 0) \text { given }
\end{array}\right.
$$

(Here, $i=\sqrt{-1}$ is the imaginary constant.) That is, find the Fourier coefficients of the solution in terms of the Fourier coefficients of the initial data $u(x, 0)$. Are the modes of the system stable, neutrally stable, or unstable? How does the solution behave and how does this differ from the heat equation studied earlier?

Solution: The solution is $u(x, t)=\sum_{n=1}^{\infty} c_{n}(t) \sin \left(\frac{n \pi x}{a}\right)$ with $c_{n}(t)=e^{i \lambda_{n} t} c_{n}(0)$, where $\lambda_{n}=$ $-\frac{n^{2} \pi^{2}}{a^{2}}$ and $\left\{c_{n}(0)\right\}_{n=1}^{\infty}$ are the Fourier coefficients of the initial data $u(x, 0)$. We therefore see that the modes $\left\{\sin \left(\frac{n \pi x}{a}\right)\right\}_{n=1}^{\infty}$ of the system are all neutrally stable since $\operatorname{Re}\left(i \lambda_{n}\right)=0$ for all n. Using Euler's formula, we see that the solution takes the form

$$
u(x, t)=\sum_{n=1}^{\infty}\left\{a_{n} \sin \left(\frac{n^{2} \pi^{2} t}{a^{2}}\right) \sin \left(\frac{n \pi x}{a}\right)+b_{n} \cos \left(\frac{n^{2} \pi^{2} t}{a^{2}}\right) \sin \left(\frac{n \pi x}{a}\right)\right\}
$$

for some set of complex-valued constants $\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ which describes a wave in space and time (called a plane wave). This is significantly different from the behavior of the heat equation, where all modes of the system decayed and the solution converges to 0 everywhere as $t \rightarrow \infty$.

