Note: For those problems taken directly from the book, solutions are available on pp. 498-500.
5.
a) Since $\mu=n p=1$, the Poisson approximation implies that $P(X=1) \approx e^{-1}$ and $P(X=2) \approx$ $e^{-1} / 2$. Therefore, $P(X=1) / P(X=2) \approx 2$ (in this case, the approximation gives the exact answer).
b) $P(X=1 \mid X=1$ or 2$)=P(X=1) / P(X=1$ or 2$) \approx e^{-1} /\left(e^{-1}+e^{-1} / 2\right)=2 / 3$ (again, this agrees with the exact answer).
6.
c) Now suppose that there actually are 3 red tickets in the box. Suppose we sample tickets from the box 3 times without replacement. Let $R=\#$ of red tickets drawn and $G=\#$ of green tickets drawn. What is the joint distribution of the random variables R and G ?

$P(r, g)$	$r=0$	1	2	3	$P(G=g)$
$g=0$	0	0	0	$1 / 10$	$1 / 10$
1	0	0	$6 / 10$	0	$6 / 10$
2	0	$3 / 10$	0	0	$3 / 10$
3	0	0	0	0	0
$P(R=r)$	0	$3 / 10$	$6 / 10$	$1 / 10$	

d) R and G are not independent. For example,

$$
P(R=1, G=0)=0 \neq 3 / 100=P(R=1) P(G=0) .
$$

