Note: For those problems taken directly from the book, solutions are available on pp. 498-500.

5.

- a) Since $\mu = np = 1$, the Poisson approximation implies that $P(X = 1) \approx e^{-1}$ and $P(X = 2) \approx e^{-1}/2$. Therefore, $P(X = 1)/P(X = 2) \approx 2$ (in this case, the approximation gives the exact answer).
- b) $P(X = 1 | X = 1 \text{ or } 2) = P(X = 1)/P(X = 1 \text{ or } 2) \approx e^{-1}/(e^{-1} + e^{-1}/2) = 2/3$ (again, this agrees with the exact answer).

6.

c) Now suppose that there actually are 3 red tickets in the box. Suppose we sample tickets from the box 3 times without replacement. Let R = # of red tickets drawn and G = # of green tickets drawn. What is the joint distribution of the random variables R and G?

P(r,g)	r = 0	1	2	3	P(G = g)
g = 0	0	0	0	1/10	1/10
1	0	0	6/10	0	6/10
2	0	3/10	0	0	3/10
3	0	0	0	0	0
P(R=r)	0	3/10	6/10	1/10	

d) R and G are not independent. For example,

$$P(R=1, G=0) = 0 \neq 3/100 = P(R=1)P(G=0).$$