
M427L (55200), Final exam solutions

Question #1.1 (30 points)

Suppose

F (x, y, z) =−z2j + yzk.

a) Does there exist a vector field G such that ∇×G =F ? Explain why or why not.

Solution: Since ∇ ·F = y � 0, then there cannot exist a G such that ∇×G = F because
the divergence of a curl is always 0.

b) Is F a gradient vector field? Justify your answer.

Solution: No, since

∇×F =

∣

∣

∣

∣

∣

∣
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∣

∣

=3zi� 0

but the curl of a gradient is always 0.

c) Let S =
{

(x, y, z) : x2 + y2 + z2 = 1, x ≥ 0
}

be the right half of the unit sphere. Compute

the surface integral
∫ ∫

S

(∇×F ) · dS

without using any integral theorems by choosing a convenient parametrization of S.

Solution: Let x = sin φ cos θ, y = sin φ sin θ, z = cos φ with −π/2 ≤ θ ≤ π/2, 0 ≤ φ ≤ π.
Then

∫ ∫

S

(∇×F ) · dS =

∫ ∫

S

3zi · (xi + yj + zk)dS

= 3

∫

0

π ∫

−π/2

π/2

sin2 φ cos φ cos θdθdφ

= 0.

d) Verify your answer to (b) using Stokes’ theorem and evaluating the appropriate integral.

[Hint: Remember, sin2 t + cos2 t = 1.]

Solution: The boundary ∂S of S is the unit circle in the yz-plane, traversed in a coun-
terclockwise manner. Parametrizing ∂S by c(t) = (0, cos t, sin t) with 0≤ t≤ 2π,

∫ ∫

S

(∇×F ) · dS =

∫

∂S

F · ds

=

∫

0

2π
(

−sin2 tj + cos t sin tk
)

· (−sin tj + cos tk)dt

=

∫

0

2π

sin t
(

sin2 t + cos2 t
)

dt

= 0.
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Question #1.2 (25 points)

Recall that Green’s theorem relates the line integral of a 2-D vector field along a closed path to
the integral of the scalar curl in the region enclosed by the path.

a) Suppose we have the line integral

∫

C

sin
(

x3
)

dx +2yex2

dy,

where C is the triangular path that connects the points (0, 0), (2, 2), and (0, 2) in a coun-
terclockwise manner. Use Green’s theorem to write this line integral as a double integral
with the appropriate limits of integration. Do not evaluate this integral yet.

Solution: Let F (x, y) = P (x, y)i + Q(x, y)j with P (x, y) = sin
(

x3
)

and Q(x, y) = 2yex2

.
By Green’s theorem

∫

C

Pdx+ Qdy =

∫ ∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy =

∫

0

2 ∫

0

y

4xyex2

dxdy.

b) Evaluate the double integral found in part (a).

Solution:

∫

0

2 ∫

0

y

4xyex2

dxdy =

∫

0

2

2y
(

ey2− 1
)

dy = e4− 5.

c) [Note: This part is unrelated to parts (a) and (b).]

True or false? Since the vector field F (x, y) =
1

x2 + y2
(−yi + xj) has zero scalar curl at all

points where it it is defined, Green’s theorem implies that for the unit circle C

∫

C

− y

x2 + y2
dx +

x

x2 + y2
dy = 0.

Solution: False. The vector field is not continuously differentiable at the origin so we
cannot apply Green’s theorem to C. In fact, as we discussed in class this vector field has
a point singularity at the origin—i.e., curl F (x) = δ0(x) where δ0(x) is the Dirac delta
distribution at 0—so any line integral about the origin is nonzero.

Question #1.3 (25 points)

The velocity field of a fluid at a particular instant of time is given by

V (x, y, z)= x3i+ y3j + zk.

Consider the fluid flux
∫ ∫

∂W

V ·ndS
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through the surface ∂W of the closed cone W =
{

(x, y, z) : z2 = x2 + y2, 0≤ z ≤ 1
}

. Evaluate this
surface integral using the following steps:

a) Use the divergence theorem to express the flux through ∂W in terms of a triple integral
(no need to write down boundaries of integration). Do not evaluate this integral yet.

Solution: Since ∇·V = 3x2 + 3y2 + 1,

∫ ∫

∂W

V ·ndS =

∫ ∫ ∫

W

(∇ ·V ) dV =

∫ ∫ ∫

W

(

3x2 + 3y2 +1
)

dV .

b) Change to cylindrical coordinates (x = r cos θ, y = r sin θ, z unchanged) to evaluate the
integral found in part (a). Make sure to include the Jacobian term |∂(x, y, z)/∂(r, θ, z)|=
rdrdθdz in the transformed integral.

Solution:

∫ ∫ ∫

W

(

3x2 +3y2 + 1
)

dV =

∫

0

1 ∫

0

2π ∫

0

z
(

3r2 +1
)

rdrdθdz =
19

30
π.

c) (Harder...) Directly evaluate the surface integral

∫ ∫

∂W

V ·ndS

by splitting it into two pieces, one along the side of the closed cone and the other along
the top. Confirm that this yields the same answer as that obtained in part (b).

Solution: The unit normal to the top surface is n= k and V (x, y, 1)=
(

x3, y3, 1
)

, so

∫ ∫

∂Wtop

V ·ndS =Area(∂Wtop)= π.

For the integral on the side of the cone, we parametrize ∂Wside by Φ(r, θ) = (r cos θ, r sin
θ, r), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Note that this parametrization gives us tangent vectors so
that the normal inwards , not outwards, so we will have to flip the sign at the end of the
calculation to get the correct contribution. Since

nin dS = dS =Tr ×Tθ drdθ = (r cos θ,− r sin θ,−r)drdθ,

we get that

∫ ∫

∂Wside

V ·nin dS =

∫ ∫

∂Wside

(

r3 cos3 θ, r3 sin3 θ, r
)

· (r cos θ,− r sin θ, r) drdθ

=

∫

0

2π ∫

0

1
(

r2− r4
(

cos4 θ + sin4 θ
))

drdθ

=
11

30
π.

Here, we have used the identity
∫

0

2π (

cos4 θ + sin4 θ
)

dθ = 3π/2. Putting this all together

we again have that
∫ ∫

∂W
V ·ndS = π − 11π/30= 19π/30.

Question #1.4 (20 points)

3



One revolution of the helicoid is given by the parametrization

Φ(r, θ) = (r cos θ, r sin θ, θ), 0≤ r ≤ 1, 0≤ θ ≤ 2π.

a) Compute
∫ ∫

Φ
2rdS.

Solution: Since Tr = ∂Φ/∂r = (cos θ, sin θ, 0) and Tθ = ∂Φ/∂θ = (−r sin θ, r cos θ, 1), we
have that Tr ×Tθ = (sin θ,−cos θ, r). Therefore,

∫ ∫

Φ

2rdS =

∫ ∫

Φ

2r‖Tr ×Tθ‖drdθ =

∫

0

2π ∫

0

1

2r 1+ r2
√

drdθ =2π
(

2 2
√

− 1
)

.

b) Compute
∫ ∫

Φ
F · dS where F = xi + yj + zk with (x, y, z) =Φ(r, θ).

Solution:

∫ ∫

Φ

F · dS =

∫ ∫

Φ

F · (Tr ×Tθ)drdθ

=

∫

0

2π ∫

0

1

(r cos θ, r sin θ, θ) · (sin θ,−cos θ, r)drdθ

= π2.

Question #2.1 (30 points)

Consider the function

f(x, y)=−x2− y2 + x+ y + 4.

a) Find all critical points of f in R
2, and classify them using the second derivative test .

Solution: [This question appeared in almost identical form on Quiz 5.] We first set the
gradient of f equal to zero to find critical points:

0 =∇f(x, y)= (− 2x + 1,− 2y + 1).

This implies that the only critical point is (1/2, 1/2). Since the Hessian is

H(x, y)=

[

fxx fxy

fyx fyy

]

=

[

−2 0
0 −2

]

,

the discriminant is D(x, y) = detH(x, y)= 4. Then D > 0 and fxx < 0 at the critical point
implies that it is a local maximum.

b) Now suppose S =
{

(x, y): x2 + y2 = 2
}

. Find extremizers of f on the domain S using any

method of your choice (e.g., Lagrange multipliers, a parametrization of S, or a clever
trick).

Solution: This can be done using Lagrange multipliers. Alternatively, one can use a

parametrization of the curve x2 + y2 = 2 such as x = 2
√

cos t and y = 2
√

sin t, 0 ≤ t < 2π,
but this yields a less straightforward approach for this problem. Define g(x, y) = x2 + y2.
Then at constrained extrema of f we must have

∇f(x, y) =λ∇g(x, y), g(x, y)= 2
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with multiplier λ. Since ∇g(x, y)= (2x, 2y), this yields the system of equations

2(λ +1)x= 1

2(λ +1)y = 1

x2 + y2 = 2.

The first two equations imply that x = y, which upon substitution in the third equation
gives that y = ± 1. Substituting this backwards, we have constrained extrema at the
points (1, 1) and (−1,−1) at which f takes the value 4 and 0, respectively.

c) Use parts (a) and (b) to determine the location of the global maximum and global min-
imum of f on the domain D =

{

(x, y): x2 + y2≤ 2
}

.

Solution: We need only compare the values for f obtained at the critical points in the
interior of the domain and on the boundary. Since f(1/2, 1/2) = 9/2 we have that the
global maximum on D is achieved at (1/2, 1/2) while the global minimum is achieved at
(−1,−1).

Question #2.2 (25 points)

Suppose the atmospheric pressure at a point (x, y, z), z ≥ 0, is given by the scalar field

P (x, y, z)=
1

π
sin (πy)− e−xz.

a) At the point (0, 1, 2), what is the (unit) direction vector in which the pressure decreases

the fastest?

Solution: Since ∇P (x, y, z) =
(

e−xz, cos (πy), −e−x
)

, the pressure at (0, 1, 2) decreases
the fastest in the direction

n=− ∇P (0, 1, 2)

‖∇P (0, 1, 2)‖ =
1

6
√ (−2, 1, 1).

b) Isobaric surfaces—surfaces of constant pressure—are given by P (x, y, z) = c for some con-
stant c (the contours of these surfaces at sea level are what you typically see in weather
forecasting maps). Find the equation for the tangent plane to the isobaric surface at the
point (0, 1, 2).

Solution: Since ∇P (0, 1, 2) is normal to the isobaric surface P (x, y, z) = P (0, 1, 2) = −2,
the equation for the tangent plane is ∇P (0, 1, 2) · ((x, y, z)− (0, 1, 2))= 0, i.e.,

2x− y − z =−3.

c) (Harder...) The baroclinity of a fluid with density ρ(x, y, z) is given by

1

ρ2(∇ρ×∇P )
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and measures the misalignment between level surfaces of the density and pressure fields.
Show that if λ is a thermodynamic function of ρ and P—that is, λ(x, y, z) = f(ρ(x, y, z),
P (x, y, z)) for some f—then

1

ρ3
∇λ · (∇ρ×∇P )= 0.

This is part of the proof of what is known as Ertel’s theorem .

[Note: For those who are interested, baroclinity is the major contributing factor in the
generation of weather systems affecting the polar and mid-latitude regions, including
most of the United States. Large baroclinity in the polar regions leads to baroclinic insta-

bility, from which cyclones (low-pressure systems) and anti-cyclones (high-pressure sys-
tems) are ‘shed’ from the Arctic into the northern hemisphere. These low-pressure sys-
tems are associated to significant precipitation events that we observe in our day-to-day
weather (e.g., showers, thunderstorms, blizzards).]

Solution: The difficulty of this problem only lies in noticing the importance of λ being a
function of ρ and P , which are themselves functions of x, y, and z. By the chain rule,

∇λ =
∂f

∂ρ
∇ρ +

∂f

∂P
∇P

which is a vector that lies in the plane determined by the vectors ∇ρ and ∇P . Therefore,
∇λ · (∇ρ×∇P )= 0.

Question #2.3 (25 points)

The following two questions are unrelated.

a) Suppose V = y2i + 2xyj + 2zk and C is some oriented curve that connects the origin to
the point (1, 1, 1). Is this enough information to evaluate

∫

C
V · ds, and if so, what is it?

In addition, can you evaluate the path integral
∫

C
‖V ‖ds without further information?

Solution: Since V =∇φ with φ(x, y, z) =xy2 + z2, it is a gradient vector field and

∫

C

V · ds = φ(1, 1, 1)− φ(0, 0, 0) =2.

However, the path integral
∫

C
‖V ‖ds cannot be evaluated without knowing the path C.

b) Calculate
∫ ∫

R

(x + y)2ex−y dxdy

where R is the region bounded by x + y = 1, x + y = 4, x − y = −1, and x − y = 1. [Hint:
Use the linear transformation T (u, v)= (x, y) given by x= (u + v)/2 and y = (u− v)/2.]

Solution: Since the Jacobian of the transformation is ∂(x, y)/∂(u, v)=−1/2,

∫ ∫

R

(x + y)2ex−y dxdy =
1

2

∫

−1

1 ∫

1

4

u2evdudv =
1

3

(

e− e−1
)

.
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Question #2.4 (20 points)

We evaluate the distance between the point (1, 1, 1) and the plane x − y + 2z = 5 by the fol-
lowing two distinct methods:

a) Consider a vector joining (1, 1, 1) to any chosen point on the plane. Compute the desired
distance directly by projecting this vector in the direction of the normal vector to the
plane.

Solution: A unit normal vector to the plane is u =
1

6
√ (1, −1, 2). Since the point (4, 1, 1)

lies in the plane, the desired distance is the length of the projection of c = (4, 1, 1)− (1, 1,
1)= (3, 0, 0) onto u:

d = ‖proju c‖= |c ·u|= 3

2

√

.

b) Use the method of Lagrange multipliers to extremize the squared distance function

dsquared(x, y, z)= (x− 1)2 + (y − 1)2 +(z − 1)2

subject to an appropriate constraint (note that extremizing the squared distance between
two arbitrary points is the same as extremizing the distance). Write down the set of
equations to be solved, and explicitly find the solution. Use this to confirm your answer
to part (a).

Solution: We seek to extremize dsquared with the constraint x − y + 2z = 5. Using
Lagrange multipliers, the set of equations to be solved is

2(x− 1, y − 1, z − 1)= λ(1,−1, 2), x− y +2z = 5.

Solving these equations, we find that λ = 1 so (x, y, z) = (3/2, 1/2, 2) is the point at which
dsquared is extremized. Therefore, the distance is

d =

(

3

2
− 1

)

2

+

(

1

2
− 1

)

2

+(2− 1)2

√

=
3

2

√

.
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