M427L (55200), Quiz \#1 Solutions

Question \#1 (4 pts.)

Does the line $\boldsymbol{v}=(2,-2,1)+t(1,1,1), t \in \mathbb{R}$, intersect the plane given by $2 x-4 y-z=3$? If so, at what point?

Solution: [Question based on p. 22, \#19, 22.] The line satisfies the equations

$$
\begin{aligned}
& x=2+t \\
& y=-2+t, \quad t \in \mathbb{R} . \\
& z=1+t
\end{aligned}
$$

Subsituting these into the equation for the plane in order to find an intersection, we have that

$$
(4+2 t)+(8-4 t)+(-1-t)=3
$$

so $t=8 / 3$. Therefore, the line intersects the plane at $(2,-2,1)+\frac{8}{3}(1,1,1)=\frac{1}{3}(14,2,11)$.

Question $\# 2$ (4 pts.)
Suppose $\boldsymbol{a}=\boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k}$ and $\boldsymbol{b}=\boldsymbol{i}-\boldsymbol{k}$.
a) Find $\cos \theta$, where θ is the angle between the two vectors.

Solution: [Question based on p. 36, \#3.] We have that $\boldsymbol{a} \cdot \boldsymbol{b}=\|\boldsymbol{a}\|\|\boldsymbol{b}\| \cos \theta$. Note that \boldsymbol{a}. $\boldsymbol{b}=1-4=-3,\|\boldsymbol{a}\|=3 \sqrt{2}$, and $\|\boldsymbol{b}\|=\sqrt{2}$. Therefore,

$$
\cos \theta=-\frac{1}{2}
$$

b) Express \boldsymbol{b} as a sum of two vectors, one of which is parallel to \boldsymbol{a} and the other which is orthogonal to \boldsymbol{a}. (Hint: Use vector projection. If you've forgotten the formula, first rederive it using a diagram.)
Solution: [Question based on p. 36, \#14.] Draw a picture with the tails of the two vectors at the same point. Denoting $\boldsymbol{c}=\operatorname{proj}_{\boldsymbol{a}} \boldsymbol{b}$ as the vector projection of \boldsymbol{b} onto \boldsymbol{a}, we know

$$
\boldsymbol{c}=\left(\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\|^{2}}\right) \boldsymbol{a}=-\frac{1}{6}(\boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k})
$$

is parallel to \boldsymbol{a}. Furthermore, $\boldsymbol{b}-\boldsymbol{c}=\frac{1}{6}(7 \boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k})$ is orthogonal to \boldsymbol{a}. Therefore the desired decomposition is

$$
\boldsymbol{b}=-\frac{1}{6}(\boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k})+\frac{1}{6}(7 \boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k}) .
$$

