M427L (55200), Quiz \#10 Solutions

Question \#1 (5 pts.)

Let $\boldsymbol{c}(t)=\left(1, t, t^{2}\right), 0 \leq t \leq 1$ be a path in \mathbb{R}^{3}.
a) With $f(x, y, z)=\sqrt{z\left(x+4 y^{2}\right)}$, compute $\int_{c} f(x, y, z) d s$.

Solution: [Question based on p. 427, \#2, 3.] We have that $\boldsymbol{c}^{\prime}(t)=(0,1,2 t)$, so $d s=$ $\sqrt{1+4 t^{2}} d t$. Therefore, since $x(t)=1, y(t)=t$, and $z(t)=t^{2}$,

$$
\begin{aligned}
\int_{\boldsymbol{c}} f(x, y, z) d s & =\int_{0}^{1} \sqrt{t^{2}\left(1+4 t^{2}\right)} \sqrt{1+4 t^{2}} d t \\
& =\int_{0}^{1} t\left(1+4 t^{2}\right) d t=\frac{3}{2}
\end{aligned}
$$

b) Evaluate

$$
\int_{\boldsymbol{c}} y \sin z d x+x y z d y+d z
$$

Solution: [Question based on p. 447, \#2.] Since $x^{\prime}(t)=0, y^{\prime}(t)=1$, and $z^{\prime}(t)=2 t$, we have that

$$
\begin{aligned}
\int_{\boldsymbol{c}} y \sin z d x+x y z d y+d z & =\int_{0}^{1}\left(x(t) y(t) z(t) y^{\prime}(t)+z^{\prime}(t)\right) d t \\
& =\int_{0}^{1}\left(t^{3}+2 t\right) d t=\frac{5}{4}
\end{aligned}
$$

c) How do your answers to parts (a) and (b) change if the path of integration is taken to be $\boldsymbol{e}(t)=\left(1,1-t,(1-t)^{2}\right), 0 \leq t \leq 1$? [Hint: There is a quick way to find the answer.]

Solution: Since $\boldsymbol{e}(t), 0 \leq t \leq 1$, traces out the same curve as $\boldsymbol{c}(t), 0 \leq t \leq 1$, but in the opposite orientation, we have that $\int_{e} f d s=3 / 2$ as before and $\int_{e} y \sin z d x+x y z d y+$ $d z=-5 / 4$.

Question \#2 (3 pts.)

Let C be the top half of the ellipse $x^{2}+9 y^{2}=4$ in the $x y$-plane, oriented in a counterclockwise direction. Find $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{s}$, where

$$
\boldsymbol{F}(x, y, z)=e^{y z} \boldsymbol{i}+x z e^{y z} \boldsymbol{j}+x y e^{y z} \boldsymbol{k}
$$

Solution: [Question based on p. 448, \#12 and p. 449, \#15.] Note that $\boldsymbol{F}=\nabla f$ for $f(x, y, z)=$ $x e^{y z}$, so it is a gradient vector field. Therefore, the integral only depends on the endpoints $(2,0$, $0)$ and $(-2,0,0)$ of C and is

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{s}=\int_{C} \nabla f \cdot d \boldsymbol{s}=f(-2,0,0)-f(2,0,0)=-4 .
$$

Alternatively, one can compute the line integral directly but this is more time-consuming. To do this, consider the parametrization

$$
\boldsymbol{c}(t)=\left(2 \cos t, \frac{2}{3} \sin t, 0\right), \quad 0 \leq t \leq \pi
$$

This traces out the curve C in a counterclockwise direction. Since $x(t)=2 \cos t, y(t)=\frac{2}{3} \sin t$, and $z(t)=0$,

$$
\begin{aligned}
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{s} & =\int_{0}^{\pi}\left(e^{y(t) z(t)} x^{\prime}(t)+x(t) z(t) e^{y(t) z(t)} y^{\prime}(t)+x(t) y(t) e^{y(t) z(t)} z^{\prime}(t)\right) d t \\
& =\int_{0}^{\pi}-2 \sin t d t=2[\cos t]_{0}^{\pi}=-4
\end{aligned}
$$

