M427L (55200), Quiz \#11 Solutions

Question \#1 (4 pts.)

Consider the parametrized surface S given by

$$
\boldsymbol{\Phi}(u, v)=u \cos v \boldsymbol{i}+u \sin v \boldsymbol{j}+u \boldsymbol{k}, \quad-\infty<u<\infty, \quad 0 \leq v<2 \pi .
$$

a) Where is the surface S regular? That is, for which (x, y, z) is $\boldsymbol{T}_{u} \times \boldsymbol{T}_{v} \neq \mathbf{0}$?

Solution: [Question based on p. 460, \#17.] Since

$$
\boldsymbol{T}_{u}=\cos v \boldsymbol{i}+\sin v \boldsymbol{j}+\boldsymbol{k}, \quad \boldsymbol{T}_{v}=-u \sin v \boldsymbol{i}+u \cos v \boldsymbol{j}
$$

we have that

$$
\boldsymbol{T}_{u} \times \boldsymbol{T}_{v}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\cos v & \sin v & 1 \\
-u \sin v & u \cos v & 0
\end{array}\right|=-u \cos v \boldsymbol{i}+u \sin v \boldsymbol{j}+u \boldsymbol{k} \neq \mathbf{0} \quad \text { if } u \neq 0
$$

Therefore, the surface is regular everywhere except at the point $\boldsymbol{\Phi}(0, v)=(0,0,0)$.
b) Find the equation for the tangent plane to S at $(3,0,3)$.

Solution: [Question based on p. 459, \#2, 7.] The point $\boldsymbol{r}_{0}=(3,0,3)$ corresponds to (u, $v)=(3,0)$. A normal vector to the tangent plane to S at $(3,0,3)$ is then given by

$$
\boldsymbol{n}=\left(\boldsymbol{T}_{u} \times \boldsymbol{T}_{v}\right)(3,0)=-3 \boldsymbol{i}+3 \boldsymbol{k}
$$

so the vector equation for the plane is $\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right)=0$. In coordinate form this is the plane $x=z$.
c) Give an equation in terms of x, y, and z for S. What is the name for this type of surface? Use this to confirm your answers to parts (a) and (b).

Solution: [Question based on p. 459, \#11, 12.] Since $x=u \cos v, y=u \sin v$, and $z=u$, we can write S as

$$
x^{2}+y^{2}=z^{2} .
$$

This is the equation for a double cone. In particular, since the cone has a sharp point at the origin it is not regular there, as was shown in part (a). Additionally, it is easy to see that the plane $x=z$ is tangent to any point on the cone that lies in the $x z$-plane, which verifies the answer to part (b).

Question \#2 (4 pts.)

The unit sphere $S=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}$ can be described parametrically by

$$
x=\sin \phi \cos \theta, \quad y=\sin \phi \sin \theta, \quad z=\cos \phi
$$

with $0 \leq \phi \leq \pi$ and $0 \leq \theta<2 \pi$. One can verify that

$$
\frac{\partial(x, y)}{\partial(\phi, \theta)}=\sin \phi \cos \phi, \quad \frac{\partial(y, z)}{\partial(\phi, \theta)}=\sin ^{2} \phi \cos \theta, \quad \frac{\partial(x, z)}{\partial(\phi, \theta)}=\sin ^{2} \phi \sin \theta
$$

Use this to compute the surface integral

$$
\iint_{S} z^{4} d S
$$

Solution: [Question based on p. 472, \#14, p. 480, \#6, and example done in lecture.] In parametric form, the surface area element is

$$
d S=\left\|\boldsymbol{T}_{\phi} \times \boldsymbol{T}_{\theta}\right\| d \phi d \theta=\sqrt{\left(\frac{\partial(x, y)}{\partial(\phi, \theta)}\right)^{2}+\left(\frac{\partial(y, z)}{\partial(\phi, \theta)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(\phi, \theta)}\right)^{2}} d \phi d \theta
$$

Since

$$
\begin{aligned}
\left(\frac{\partial(x, y)}{\partial(\phi, \theta)}\right)^{2}+\left(\frac{\partial(y, z)}{\partial(\phi, \theta)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(\phi, \theta)}\right)^{2} & =\sin ^{2} \phi \cos ^{2} \phi+\sin ^{4} \phi \cos ^{2} \theta+\sin ^{4} \phi \sin ^{2} \theta \\
& =\sin ^{2} \phi\left(\cos ^{2} \phi+\sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right) \\
& =\sin ^{2} \phi
\end{aligned}
$$

the area element simplifies to $d S=\sin \phi d \phi d \theta$. Therefore, we find that

$$
\iint_{S} z^{4} d S=\int_{0}^{2 \pi} \int_{0}^{\pi} \cos ^{4} \phi \sin \phi d \phi d \theta=2 \pi\left[-\frac{1}{5} \cos ^{5} \phi\right]_{0}^{\pi}=\frac{4}{5} \pi
$$

