M427L (55200), Quiz \#12 Solutions

Question \#1 (4 pts.)

Let S be the sphere of radius 2 (i.e., the surface given by $x^{2}+y^{2}+z^{2}=4$). Suppose there is an electric field $\boldsymbol{E}(x, y, z)=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$. Compute the electric flux

$$
\iint_{S} \boldsymbol{E} \cdot d \boldsymbol{S}
$$

through the surface, where S is oriented so that the unit normal points outward. [Hint: Remember that the vector area element can be written as $d \boldsymbol{S}=\boldsymbol{n} d S$, with \boldsymbol{n} the unit normal to the surface and $d S$ the surface area element. Also recall that the surface area of a sphere of radius R is $4 \pi R^{2}$.]
Solution: [Question based on p. 497, \#2, 3 and p. 498, \#9.] Since the unit normal to the sphere S is simply the radial vector

$$
\boldsymbol{n}=\frac{x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

we have that the electric flux is

$$
\iint_{S} \boldsymbol{E} \cdot d \boldsymbol{S}=\iint_{S}(\boldsymbol{E} \cdot \boldsymbol{n}) d S=\iint_{S} \sqrt{x^{2}+y^{2}+z^{2}} d S=2 \iint_{S} d S=32 \pi
$$

where we have used that $\sqrt{x^{2}+y^{2}+z^{2}}=2$ on S.

Question \#2 (4 pts.)

Let C be the boundary of the region bounded by $y=x$ and $y=x^{2}$, oriented in a counterclockwise direction. Consider the line integral

$$
\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y
$$

a) Evaluate the above quantity using Green's theorem. [Hint: Remember that the line integral is $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{s}$, where $\boldsymbol{F}(x, y)=P(x, y) \boldsymbol{i}+Q(x, y) \boldsymbol{j}=\left(x y+y^{2}\right) \boldsymbol{i}+x^{2} \boldsymbol{j}$.

Solution: [Question based on p. 528, \#1, 2.] Green's theorem states that for a vector field \boldsymbol{F} in the plane

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{s}=\iint_{D}(\operatorname{curl} \boldsymbol{F}) \cdot \boldsymbol{k} d A
$$

where D is the region bounded by the curve C. Alternatively, this can be written as

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

Since $\partial Q / \partial x=2 x$ and $\partial P / \partial y=x+2 y$, by Green's theorem we have that

$$
\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y=\int_{0}^{1} \int_{x^{2}}^{x}(x-2 y) d y d x=-\int_{0}^{1}\left(x^{3}-x^{4}\right) d x=-\frac{1}{20}
$$

b) Compute the line integral directly to verify that your answer to (a) is correct.

Solution: We evaluating the line integral directly by splitting the integral along C into two pieces C_{1} and C_{2}, one along $y=x^{2}$ and the other along $y=x$. Using the parametrization $\boldsymbol{c}(t)=\left(t, t^{2}\right), 0 \leq t \leq 1$, the first integral is

$$
\int_{C_{1}}\left(x y+y^{2}\right) d x+x^{2} d y=\int_{0}^{1}\left(t^{3}+t^{4}\right) d t+\int_{0}^{1} t^{2}(2 t) d t=\frac{19}{20}
$$

Using the parametrization $\boldsymbol{c}(t)=(1-t, 1-t), 0 \leq t \leq 1$, the integral over C_{2} is

$$
\int_{C_{2}}\left(x y+y^{2}\right) d x+x^{2} d y=-\int_{0}^{1} 2(1-t)^{2} d t-\int_{0}^{1}(1-t)^{2} d t=-1
$$

Therefore,

$$
\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y=\frac{19}{20}-1=-\frac{1}{20}
$$

as in part (a).

