M427L (55200), Quiz \#13 Solutions

Question \#1 (4 pts.)

Let $S=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ be the upper half of the unit sphere (without a bottom) oriented outward. Evaulate

$$
\iint_{S}(\nabla \times \boldsymbol{V}) \cdot d \boldsymbol{S}
$$

where $\boldsymbol{V}=-y \boldsymbol{i}+x \boldsymbol{j}+\left(e^{x-y} \sin z\right) \boldsymbol{k}$. [Hint: Don't evaluate this directly.]
Solution: [Question based on p. 547, \#9.] By Stokes theorem, we have that

$$
\iint_{S}(\nabla \times \boldsymbol{V}) \cdot d \boldsymbol{S}=\int_{\partial S} \boldsymbol{V} \cdot d \boldsymbol{s}
$$

where the oriented boundary ∂S of S is simply the unit circle in the $x y$-plane, to be traversed counterclockwise. Parametrizing ∂S by $\boldsymbol{c}(t)=(\cos t, \sin t, 0), 0 \leq t \leq 2 \pi$, we find the desired answer:

$$
\int_{0}^{2 \pi} \boldsymbol{V}(\boldsymbol{c}(t)) \cdot \boldsymbol{c}^{\prime}(t) d t=\int_{0}^{2 \pi}(-\sin t, \cos t, 0) \cdot(-\sin t, \cos t, 0) d t=2 \pi
$$

Note that this would be significantly more complicated to evaluate directly since one would need to compute $\nabla \times \boldsymbol{V}$, find the unit normal \boldsymbol{n} to S, and then compute a double integral. To see this, note that

$$
\nabla \times \boldsymbol{V}=\left(-e^{x-y} \sin z\right) \boldsymbol{i}+\left(-e^{x-y} \sin z\right) \boldsymbol{j}+2 \boldsymbol{k}
$$

Since $\boldsymbol{n}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ is the outward unit normal we have that

$$
\iint_{S}(\nabla \times \boldsymbol{V}) \cdot \boldsymbol{n} d S=\iint_{S}\left[-(x+y) e^{x-y} \sin z+2 z\right] d S
$$

This first part of the integral yields 0 due to the symmetry of the term $(x+y) e^{x-y}$ and the domain of integration (this can be checked directly but it involves a computation). Using spherical coordinates with $z=\cos \phi$ and $d S=\sin \phi d \theta d \phi$, the second part yields

$$
\iint_{S} 2 z d S=\int_{0}^{\pi / 2} \int_{0}^{2 \pi} 2 \cos \phi \sin \phi d \theta d \phi=2 \pi\left[\sin ^{2} \phi\right]_{0}^{\pi / 2}=2 \pi
$$

as before.

Question $\# 2$ (4 pts.)

Let $\boldsymbol{F}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ and define S to be outward oriented surface of the unit cube $W=[0,1] \times$ $[0,1] \times[0,1]$.
a) Directly evaluate the surface integral

$$
\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}
$$

by finding the unit normal \boldsymbol{n} to the surface and using that $d \boldsymbol{S}=\boldsymbol{n} d S$. Show your work! [Hint: Compute the integral over each face of the cube separately. Each of these integrals is easy to evaluate by noting the particular form of the integrand.]

Solution: [Question based on p. 574, \#4.] First we compute the three integrals along the $x y$-, $x z$-, and $y z$-planes. Note that for the face $S_{z=0}$ in the $x y$-plane we have

$$
\iint_{S_{z=0}} \boldsymbol{F} \cdot d \boldsymbol{S}=\int_{0}^{1} \int_{0}^{1}(x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}) \cdot(-\boldsymbol{k}) d x d y=-\int_{0}^{1} \int_{0}^{1} z d x d y=0
$$

since $z=0$ on this surface. The other two integrals are also 0 by similar reasoning. Finally, the other three integrals are evaluated as follows. For the face $S_{z=1}$ parallel to the $x y$-plane we have that

$$
\iint_{S_{z=1}} \boldsymbol{F} \cdot d \boldsymbol{S}=\int_{0}^{1} \int_{0}^{1}(x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}) \cdot \boldsymbol{k} d x d y=\int_{0}^{1} \int_{0}^{1} z d x d y=1
$$

since $z=1$ on this surface. The remaining integrals also yield 1. Putting these integrals together we have that

$$
\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}=3 .
$$

b) Re-evaluate the surface integral in part (a) using the divergence theorem.

Solution: Since $\operatorname{div} \boldsymbol{F}=3$ everywhere, we use the divergence theorem to obtain

$$
\iint_{S} \boldsymbol{F} \cdot d \boldsymbol{S}=\iiint_{V}(\operatorname{div} \boldsymbol{F}) d V=3 \times \operatorname{volume}(V)=3 .
$$

