M427L (55200), Quiz \#3 Solutions

Question \#1 (4 pts.)

At which point on the surface $z=f(x, y)=y^{2}-x^{2}+3 x$ is the tangent plane orthogonal to the line $\boldsymbol{r}(t)=10 t \boldsymbol{i}+4 t \boldsymbol{j}-2 t \boldsymbol{k}, t \in \mathbb{R}$?
Solution: [Question based on Differentiation (2.3), extra problem \#1.] The tangent plane at any point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface is

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0
$$

and therefore has normal vector $\boldsymbol{n}=\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right),-1\right)=\left(-2 x_{0}+1,2 y_{0},-1\right)$. Since we are looking for a plane which is orthogonal to $\boldsymbol{r}(t)$ for any $t \in \mathbb{R}$, we must have that $\boldsymbol{n}=c \boldsymbol{r}(1)$ for some constant c. Therefore, this yields the system of equations

$$
\begin{gathered}
-2 x_{0}+3=10 c \\
2 y_{0}=4 c \\
-1=-2 c
\end{gathered}
$$

This implies $c=1 / 2$, so the point on the surface we are looking for is $\left(x_{0}, y_{0}\right)=(-1,1)$.

Question $\# 2$ (4 pts.)

Compute the following limits, if they exist (as a finite number). If the limit does not exist, state this and justify your answer.
a) (2 pts.)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{-2 x^{3} y+x y^{2}}{x^{6}+y^{2}}
$$

Solution: [Question based on problem done in lecture.] This limit does not exist. To see this, consider two paths along which we obtain different values for the limit. For example, if $y=0$ (i.e., travel along the x-axis) then the limit as $x \rightarrow 0$ is 0 . On the other hand, if we balance the terms in the denominator by letting $y=y(x)=x^{3}$ then as $x \rightarrow 0$ we get the limit

$$
\lim _{x \rightarrow 0} \frac{-2 x^{6}+x^{7}}{2 x^{6}}=-1
$$

b) (2 pts.) (Hint: The limit exists.)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x-y)}{e^{-y}-e^{-x}}
$$

Solution: [Question based on p. 125, \#8(b).] First, let us rewrite

$$
\frac{\sin (x-y)}{e^{-y}-e^{-x}}=e^{x} \cdot \frac{\sin (x-y)}{e^{x-y}-1}=e^{x} \cdot \frac{\sin (z)}{e^{z}-1}
$$

with $z=x-y$. In addition, since $z \rightarrow 0$ as $(x, y) \rightarrow(0,0)$, L'Hopital's rule gives

$$
\lim _{z \rightarrow 0} \frac{\sin (z)}{e^{z}-1}=\lim _{z \rightarrow 0} \frac{\cos (z)}{e^{z}}=1
$$

Therefore

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x-y)}{e^{-y}-e^{-x}}=\left(\lim _{x \rightarrow 0} e^{x}\right)\left(\lim _{z \rightarrow 0} \frac{\sin (z)}{e^{z}-1}\right)=1
$$

since we are considering the product of two functions of one variable, each of which are continuous at 0 .

