Question #1 (2 pts.)

Design a cylindrical soup can which has volume c (where c is some constant) and uses a minimal amount of metal. That is, simply write a system of equations for the radius r and height h of the can which will yield a solution to this minimization problem. Show your work, and do not solve for r and h!

Solution: [Question based on p. 244, #13.] We seek to minimize the surface area $S(r, h) = 2\pi rh + 2\pi r^2$ of the can subject to the constraint V(r, h) = c, where $V(r, h) = \pi r^2 h$ is the volume of the can. Then

$$\nabla S(r,h) = (2\pi h + 4\pi r, 2\pi r), \qquad \nabla V(r,h) = (2\pi r h, \pi r^2)$$

and the method of Lagrange multipliers implies that we must solve the system of equations

$$2\pi h + 4\pi r = 2\lambda\pi r h$$
$$2\pi r = \lambda\pi r^2$$
$$\pi r^2 h = c$$

to find the optimal design.

Question #2 (6 pts.)

Consider the function

$$f(x, y) = -x^2 - y^2 + \sqrt{3} x + y + 4$$

a) (2 pts.) Find all critical points of f in \mathbb{R}^2 , and classify them using the second derivative test.

Solution: [*Question based on problem from lecture.*] We first set the gradient of f equal to zero to find critical points:

$$0 = \nabla f(x, y) = \left(-2x + \sqrt{3}, -2y + 1\right)$$

This implies that the only critical point is $(\sqrt{3}/2, 1/2)$. Since the Hessian is

$$H(x,y) = \left[\begin{array}{cc} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{array} \right] = \left[\begin{array}{cc} -2 & 0 \\ 0 & -2 \end{array} \right],$$

the discriminant is $D(x, y) = \det H(x, y) = 4$. Then D > 0 and $f_{xx} < 0$ at the critical point implies that it is a local maximum.

b) (3 pts.) Now suppose $S = \{(x, y): x^2 + y^2 = 4\}$. Find extremizers of f on the domain S.

Solution: [Question based on problem from lecture.] This can be done using Lagrange multipliers. Alternatively, one can use a parametrization of the curve $x^2 + y^2 = 4$ such as $x = 2 \cos t$ and $y = 2 \sin t$, $0 \le t < 2\pi$, but this yields a less straightforward approach for this problem. Define $g(x, y) = x^2 + y^2$. Then at constrained extrema of f we must have

$$\nabla f(x, y) = \lambda \nabla g(x, y), \qquad g(x, y) = 4$$

with multiplier λ . Since $\nabla g(x, y) = (2x, 2y)$, this yields the system of equations

$$2(\lambda + 1)x = \sqrt{3}$$
$$2(\lambda + 1)y = 1$$
$$x^2 + y^2 = 4.$$

The first two equations imply that $x = \sqrt{3}y$, which upon substitution in the third equation gives that $y = \pm 1$. Substituting this backwards, we have constrained extrema at the points $(\sqrt{3}, 1)$ and $(-\sqrt{3}, -1)$ at which f takes the value 4 and -4, respectively.

c) (1 pt.) Use parts (a) and (b) to determine the location of the global maximum and global minimum of f on the domain $D = \{(x, y): x^2 + y^2 \le 4\}$.

Solution: We need only compare the values for f obtained at the critical points in the interior of the domain and on the boundary. Since $f(\sqrt{3}/2, 1/2) = 5$ we have that the global maximum on D is achieved at $(\sqrt{3}/2, 1/2)$ while the global minimum is achieved at $(-\sqrt{3}, -1)$.