M427L (55200), Quiz \#7 Solutions

Question \#1 (6 pts.)

Suppose

$$
\boldsymbol{V}(x, y, z)=(x-y) \boldsymbol{i}+(x+y) \boldsymbol{j}
$$

[Hint: It may be useful to think of $\boldsymbol{V}=\boldsymbol{W}_{1}+\boldsymbol{W}_{2}$, where the vector fields $\boldsymbol{W}_{1}=x \boldsymbol{i}+y \boldsymbol{j}$ and $\boldsymbol{W}_{2}=-y \boldsymbol{i}+x \boldsymbol{j}$ were discussed at length in lecture.]
a) Sketch the vector field \boldsymbol{V} in 2-D for $z=0$ (only draw enough scaled vectors necessary to give basic picture).

Solution: [Question based on p. 311-313, \#2, 6, 31 and problems done in lecture.] The vector field is depicted below, with the size of vectors indicated by color (blue is smaller, green is larger).

b) Compute div \boldsymbol{V}.

Solution:

$$
\operatorname{div} \boldsymbol{V}=\frac{\partial}{\partial x}(x-y)+\frac{\partial}{\partial y}(x+y)=2 \quad \text { for all }(x, y, z)
$$

c) Compute curl \boldsymbol{V}.

Solution:

$$
\operatorname{curl} \boldsymbol{V}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x-y & x+y & 0
\end{array}\right|=2 \boldsymbol{k} \quad \text { for all }(x, y, z)
$$

d) If a very small box of points is placed in the vector field at the point $(1,1,1)$, will the volume of the box a short time later be larger, smaller, or the same? Will the orientation of the box about its center remain the same or will it have rotated? Justify your answers.

Solution: The volume of the box will be larger since the divergence of \boldsymbol{V} at $(1,1,1)$ is positive. Its orientation will be rotated with respect to the $x-y$ plane since the curl at (1, $1,1)$ is nonzero and points in the z-direction. In fact, both of these statements hold true everywhere and not only at the particular point $(1,1,1)$.
e) Is \boldsymbol{V} a gradient vector field? If so, find its scalar potential and if not, justify your answer.

Solution: No, it is not a gradient vector field. This is easily seen by noting that its curl is nonzero. Explicitly, suppose $\boldsymbol{V}=(x-y, x+y)=\nabla f$ for some C^{2} scalar function f. Then $\partial f / \partial x=x-y$ and $\partial f / \partial y=x+y$, so equality of mixed partials would tell us that

$$
-1=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}=1 .
$$

Since this is obviously not true, \boldsymbol{V} cannot be a gradient vector field.

Question \#2 (2 pts.)

If \boldsymbol{W} is a vector field and ϕ is a scalar field, indicate whether each of the five following expressions is a vector field, a scalar field, or doesn't make sense. Please note that you do not need to simplify or compute any of them!
i. $\nabla \cdot(\nabla \times \boldsymbol{W})$
ii. $\nabla \times(\nabla \cdot \boldsymbol{W})$
iii. $\operatorname{div} \operatorname{div} \boldsymbol{W}$
iv. $\nabla \times(\nabla \times \nabla \phi)$
v. $\operatorname{div} \operatorname{grad} \phi-\operatorname{grad} \operatorname{div} \boldsymbol{W}$

Solution: (i) scalar field, (ii) doesn't make sense since cannot take curl of a scalar field, (iii) doesn't make sense since cannot take divergence of a scalar field, (iv) vector field, (v) doesn't make sense since first term is scalar-valued while second term is vector-valued.

