M427L (55200), Quiz \#8 Solutions

Question \#1 (4 pts.)

Consider a 3-D vector field of the form

$$
\boldsymbol{V}=\nabla \phi+\operatorname{curl} \boldsymbol{F}
$$

where

$$
\phi(x, y, z)=\frac{1}{12} x^{4} y^{4} z^{4}, \quad \operatorname{curl} \boldsymbol{F}(x, y, z)=\frac{1}{2} x^{2} y^{2} z^{2}(\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k})
$$

a) Compute $\nabla^{2} \phi$ (i.e., $\operatorname{div} \nabla \phi=\phi_{x x}+\phi_{y y}+\phi_{z z}$).

Solution:

$$
\nabla^{2} \phi=x^{2} y^{4} z^{4}+x^{4} y^{2} z^{4}+x^{4} y^{4} z^{2}=x^{4} y^{4} z^{4}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)
$$

b) What is $\nabla \times \operatorname{curl} \boldsymbol{F}$?

Solution:

$$
\begin{aligned}
\nabla \times \operatorname{curl} \boldsymbol{F} & =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{1}{2} x^{2} y^{2} z^{2} & \frac{1}{2} x^{2} y^{2} z^{2} & \frac{1}{2} x^{2} y^{2} z^{2}
\end{array}\right| \\
& =\left(x^{2} y z^{2}-x^{2} y^{2} z\right) \boldsymbol{i}+\left(x^{2} y^{2} z-x y^{2} z^{2}\right) \boldsymbol{j}+\left(x y^{2} z^{2}-x^{2} y z^{2}\right) \boldsymbol{k} \\
& =x^{2} y^{2} z^{2}\left[\left(\frac{1}{y}-\frac{1}{z}\right) \boldsymbol{i}+\left(\frac{1}{z}-\frac{1}{x}\right) \boldsymbol{j}+\left(\frac{1}{x}-\frac{1}{y}\right) \boldsymbol{k}\right]
\end{aligned}
$$

c) Find $\operatorname{div} \boldsymbol{V}$ and $\operatorname{curl} \boldsymbol{V}$. [Hint: There is a quick way to find these answers!]

Solution: [Question based on p. 312, \#23, 28, 32 and problem done in lecture.] The divergence and curl of \boldsymbol{V} can be found easily using that curls are divergence-free and gradients are curl-free. That is, since div curl $\boldsymbol{F}=0$,

$$
\operatorname{div} \boldsymbol{V}=\operatorname{div} \nabla \phi+\operatorname{div} \operatorname{curl} \boldsymbol{F}=\nabla^{2} \phi=x^{4} y^{4} z^{4}\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)
$$

by part (a). Similarly, since $\nabla \times \nabla \phi=0$,

$$
\operatorname{curl} \boldsymbol{V}=\nabla \times \nabla \phi+\nabla \times \operatorname{curl} \boldsymbol{F}=x^{2} y^{2} z^{2}\left[\left(\frac{1}{y}-\frac{1}{z}\right) \boldsymbol{i}+\left(\frac{1}{z}-\frac{1}{x}\right) \boldsymbol{j}+\left(\frac{1}{x}-\frac{1}{y}\right) \boldsymbol{k}\right]
$$

by part (b). Note that it would be significantly more difficult to derive these expressions without using the above properties for the divergence and curl.

Question \#2 (4 pts.)

a) Evaluate

$$
\int_{0}^{4} \int_{0}^{\sqrt{x}} 3 e^{12 y-y^{3}} d y d x
$$

Solution: [Question based on p. 353-354, \#2c, 11.] The integral can be evaluated after reversing the order of integration. The region of integration is

$$
D=\{(x, y): 0 \leq y \leq \sqrt{x}, \quad 0 \leq x \leq 4\}=\left\{(x, y): y^{2} \leq x \leq 4, \quad 0 \leq y \leq 2\right\}
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{4} \int_{0}^{\sqrt{x}} 3 e^{12 y-y^{3}} d y d x & =\int_{0}^{2} \int_{y^{2}}^{4} 3 e^{12 y-y^{3}} d x d y \\
& =\int_{0}^{2} 3\left(4-y^{2}\right) e^{12 y-y^{3}} d y \\
& =\int_{0}^{16} e^{u} d u \\
& =e^{16}-1
\end{aligned}
$$

b) Write a triple integral which gives the volume of the top half of a sphere of radius 1 centered at the origin. Do not evaluate this integral!

Solution: [Question based on p. 365, \#26 and problem done in lecture.]

$$
V=\int_{0}^{1} \int_{-\sqrt{1-z^{2}}}^{\sqrt{1-z^{2}}} \int_{-\sqrt{1-z^{2}-y^{2}}}^{\sqrt{1-z^{2}-y^{2}}} d x d y d z
$$

