M427L (55200), Sample Midterm \#2 Solutions

1.

a) Draw the vector field $\boldsymbol{F}(x, y)=(y,-x)$.

Solution: None given.
b) Find an expression for a flow line $\boldsymbol{c}(t)$ for \boldsymbol{F} by taking a good guess.

Solution: $\boldsymbol{c}(t)=(\cos t, \sin t)$.
c) Do the same for $\boldsymbol{F}(x, y)=(2 x,-y)$.

Solution: $\boldsymbol{c}(t)=(\exp (2 t), \exp (-t))$.
2.
a) Find the arc length of $\boldsymbol{c}(t)=\left(2 t, t^{2}\right), 0 \leq t \leq 1$.

Solution: $\sqrt{2}+\log (\sqrt{2}+1)$.
b) Find the arc length of $\boldsymbol{c}(t)=\left(2 \sin ^{2} t, \sin ^{4} t\right), 0 \leq t \leq \pi / 2$.

Solution: $\sqrt{2}+\log (\sqrt{2}+1)$.
c) Explain your answers to parts (a) and (b).

Solution: The two parametrizations are the same.
3.
a) Evaluate the following integral over the region D bounded by the lines $x+y=1, x+y=$ $-1, x-y=1$, and $x-y=-1$:

$$
\iint_{D} 3(x+y) e^{x-y} d x d y
$$

Solution: 0 .

b) Evaluate

$$
\int_{0}^{1} \int_{0}^{x} \sin y^{2} d y d x
$$

Solution: $(1-\cos (1)) / 2$.
c) Find the mass of a wall described by $0 \leq y \leq-x^{2}-2 x+3,-3 \leq x \leq 3$, having mass density $\rho(x, y)=2|y|+3$.
Solution: 1848/5.
4. Let $\boldsymbol{F}(x, y)=e^{x} \cos 3 y \boldsymbol{i}-3 e^{x} \sin 3 y \boldsymbol{j}$.
[Hint: Use shortcuts to quickly find answers to the following questions.]
a) Find an $f(x, y)$ such that $\nabla f=\boldsymbol{F}$ for all (x, y).

Solution: $f(x, y)=e^{x} \cos (3 y)+C$ for any constant C.
b) Evaluate $\int_{\boldsymbol{c}} \boldsymbol{F} \cdot d \boldsymbol{s}$ for the path $\boldsymbol{c}(t)=(\cos t, \sin t), 0 \leq t \leq \pi$.

Solution: $f(-1,0)-f(1,0)=e^{-1}-e^{1}$.
c) Compute $\operatorname{div} \boldsymbol{F}$ and $\operatorname{curl} \boldsymbol{F}$.

Solution: $\operatorname{div} \boldsymbol{F}=-8 e^{x} \cos 3 y, \operatorname{curl} \boldsymbol{F}=\mathbf{0}$.
5.
a) A particle moves in a path $\boldsymbol{c}(t)=(2 t, 3 t, t)$ in a force field $\boldsymbol{F}=(2 x, 2 y, 4 z)$. What is the work done by \boldsymbol{F} in the time interval $0 \leq t \leq 5$?
Solution: 375.
b) With the same $\boldsymbol{c}(t)$ and $f(x, y, z)=x y z$, what is $\int_{c} f d s$?

Solution: $\frac{3}{2} \sqrt{14} \cdot 5^{4}$.
6. A hole of radius $1 / 2$ is drilled through the axis of symmetry of the hemisphere $x^{2}+y^{2}+z^{2}=$ $1, z \geq 0$.
a) Write (but do not compute) an integral for the volume of the remaining piece in cartesian coordinates.

Solution:

$$
4 \int_{1 / 2}^{1} \int_{\sqrt{\frac{1}{4}-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} d z d y d x
$$

b) Write (but do not compute) an integral for the volume of the remaining piece in cylindrical coordinates.

Solution:

$$
\int_{0}^{2 \pi} \int_{0}^{1 / 2} \int_{0}^{\sqrt{1-r^{2}}} r d z d r d \theta
$$

c) Compute the volume.

Solution: $\frac{\pi}{3}\left(1-\left(\frac{3}{4}\right)^{3 / 2}\right)$.
7.
a) Use the vector field $\boldsymbol{V}=\nabla f$ with $f(x, y, z)=c_{1} x+c_{2} y+c_{3} z$ to explain the meaning of divergence. For this particular choice of vector field, what is $\nabla \times \boldsymbol{V}$?
Solution: See lecture notes.
b) Use the vector field $\boldsymbol{V}(x, y)=-\omega y \boldsymbol{i}+\omega x \boldsymbol{j}$ to explain the meaning of curl. For this particular choice of vector field, what is $\nabla \cdot \boldsymbol{V}$?

Solution: See lecture notes.
c) Are the divergence and curl at a point local quantities or do they depend on the entire vector field?
Solution: Local quantitites.

