Congruence and Normal Subgroups, Part II

Recall that we defined the right cosets of a subgroup H in a group G to be the sets $Ha = \{ha | h \in H\}$. We could just as well have defined the left cosets $aH = \{ah | h \in H\}$. Will the left coset aH be the same as the right coset Ha? It is certainly true if G is abelian, but what about for a non-abelian group G?

Example: In D_4, let r be the transformation defined by rotating $\frac{2\pi}{2}$ units about the z-axis, let a be rotation $\frac{\pi}{2}$ units about the line $y=x$ in the x-y plane, b be rotation $\frac{\pi}{2}$ units about the x–axis, and c be rotation $\frac{\pi}{2}$ units about the y–axis. Let $H = \{e, a\}$. Since a has order 2, H is a subgroup of D_4. Then $rH = \{re, ra\} = \{r, c\}$, and $Hr = \{er, ar\} = \{r, b\}$. So $rH \neq Hr$.

Example: Again in D_4, let $K = \{e, r, r^2, r^3\}$. Then $aK = \{ae, ar, ar^2, ar^3\} = \{a, b, d, c\}$ and $Ka = \{ea, ra, r^2a, r^3a\} = \{a, c, d, b\}$. So, for this subgroup $aK = Ka$. It is easy to verify that for any $g \in D_4$, $gK = Kg$.

From these two examples, it is clear that while we cannot assume in general that left and right cosets agree, there are some subgroups $K \triangleleft G$ for which $gK = Kg$ for all $g \in G$. As we shall see shortly, subgroups with this property are particularly nice, and so we give them a name.

Definition: A subgroup N of a group G is called normal if and only if $gN = Ng$ for all $g \in G$.

Caution: It is important to note that the statement $gN = Ng$, does not mean that $gn = ng$ for each $n \in N$. It does mean that for each $n \in N$, there is some $n_1 \in N$ such that $gn = n_1g$.

Problem 1: In S_3, let $H = \langle (1 \ 2) \rangle$ and $K = \langle (1 \ 2 \ 3) \rangle$. Show that K is a normal subgroup of S_3, but H is not.

Why are we interested in normal subgroups? Recall that what we have done with congruence modulo a subgroup H generalizes what was done with congruence modulo n in the integers. In that case, we were able to define a product on the set of congruence classes modulo n, since we were able to show that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$. If you review the proof of this result, you will see that we used the commutative property of the integers under multiplication. For a general group G, then, the corresponding result may not hold. In other words, it can happen that $a \equiv b \pmod{H}$ and $c \equiv d \pmod{H}$, but $ac \not\equiv bd \pmod{H}$.
Example: Let $H = \{e, a\}$ in D_4, as in the example above. Since $Hr = \{r, b\}$, $r \equiv b \pmod{H}$. Likewise, since $Hr^2 = \{er^2, ar^2\} = \{r^2, d\}$, $r^2 \equiv d \pmod{H}$, where d is rotation $\frac{\pi}{2}$ units about the line $y=-x$ in the x-y plane. But if $rr^2 \equiv bd \pmod{H}$, then $r^3 \equiv r \pmod{H}$, since $bd = r$. But that can only happen if $r^2 \not\in H$, which is clearly not true. So $rr^2 \not\equiv bd \pmod{H}$.

Problem 2: In S_3, let $a = (1\ 3)$, and $b = (1\ 3\ 2)$. Let $H = \langle (1\ 2) \rangle$. Show that $a \equiv b \pmod{H}$, but $a^2 \not\equiv b^2 \pmod{H}$.

This means, that for a group G which is non-abelian, we cannot in general define a product on the set of equivalence classes modulo a subgroup H. However, in the case that the subgroup is normal, we can as the theorem below states.

Theorem: Let N be a normal subgroup of a group G. If $a \equiv b \pmod{N}$ and $c \equiv d \pmod{N}$, then $ac \equiv bd \pmod{N}$.

We will pursue the consequences of this theorem in the next handout, but for now, let’s consider the problem of identifying normal subgroups in a group G. Using the definition, as it turns out, is not the easiest way to prove that a subgroup is normal. Other equivalent conditions are given in the theorem below. Using the second condition is often the easiest way to prove that a subgroup is normal.

Theorem: For a subgroup N of a group G, the following statements are equivalent:

1. N is a normal subgroup.
2. For each $g \in G$, $gN = \{gn | n \in N\} \subseteq N$.
3. For each $g \in G$, $g^3N = N$.

Caution: As above, it is important to note that the statement $g^3N = N$, does not mean that $g^3n = n$ for each $n \not\in N$. It does mean that for each $n \not\in N$, there is some $n_1 \not\in N$ such that $g^3n = n_1$.

Problem 3: Let G be a group, and define $Z(G) = \{a \in G | ag = ga$ for every $g \in G\}$. $Z(G)$ is called the center of G.

(a) Show that $Z(G)$ is a subgroup of G.
(b) Show that $Z(G)$ is a normal subgroup.

Problem 4: Show that $N = \{e, r^2\}$ is a normal subgroup of D_4. (Hint: show that $r^2 \not\in Z(D_4)$.)

Problem 5: If M and N are normal subgroups of a group G, show that $M \cap N$ is normal.