1. Prove that if $P(x)=a+b x+c x^{2}$ with integer coefficients a, b, c and n is an integer, then

$$
r \equiv s \quad(\bmod n) \quad \text { implies } P(r) \equiv P(s) \quad(\bmod n)
$$

Bonus: prove that the same is true for every integer polynomial P.
2. Show that for every integer a not divisible by 11 there is another integer b with $a \cdot b \equiv 1 \quad(\bmod 11)$. Show also that this b is unique modulo 11 , that is, show that if c is another integer with $a \cdot c \equiv 1(\bmod 11)$ then $b \equiv c(\bmod 11)$. Then solve the congruence $3 x \equiv 7 \quad(\bmod 11)$ (presumably, but not necessarily, using the other ideas in this paragraph).
3. (a) Find a solution in integers x, y to the equation $13 x+21 y=4$.
(b) Find another solution.
(c) Find another.
(d) Stop me from continuing this question ad infinitum by describing all the solution pairs (x, y). (Hint: finding one solution is the hard part and you already did that; then if $\left(x^{\prime}, y^{\prime}\right)$ were another solution, you'd have two equations to play with, one with x, y and one with x^{\prime}, y^{\prime}. Subtract, rearrange terms, and see what you can conclude...)
4. Use the Fundamental Theorem of Arithmetic to prove the following: If a and b are positive integers and $a^{3} \mid b^{2}$, then $a \mid b$. Bonus: can you say anything similar if you are told that $a^{m} \mid b^{n}$ for some other pair of integers m, n ?

Reminder: I believe we have agreed to the following schedule:
Tuesday $9 / 21$ and Thursday $9 / 23$ are regular class days.
Friday $9 / 24$ at noon I will hold extra office hours in or near my office (RLM 9.140) as a review session.

Tuesday $9 / 28$ will be our first exam, in the regular room at the regular time.

