1. Find a polynomial \(f(x) \) which has the same values as \(g(x) = \frac{120}{x} \) for \(x = 1, 2, 3, 4, 5 \).
 (That is, we need \(f(1) = 120, f(2) = 60, \) etc.)

2. Suppose \(A \) and \(B \) are square matrices of the same size, and that \(ABABA = I \).
 (a) Explain why \(A \) is invertible.
 (b) Show that \(AB = BA \).

3. The exponential function is defined for square matrices \(A \) by the usual power series:
 \[
 e^A = I + A + \frac{1}{2} A^2 + \ldots = \sum_{n=0}^{\infty} \frac{1}{n!} A^n
 \]
 Compute \(e^A \) when \(A = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} \).

4. A linear transformation \(L : \mathbf{R}^n \to \mathbf{R}^n \) is called a projection if \(L(L(v)) = L(v) \) for each \(v \in \mathbf{R}^n \). For example the function \(L(x, y, z) = (2y + 3z, y, z) \) is a projection in \(\mathbf{R}^3 \).
 Show that the only possible eigenvalues of a projection \(L \) are 0 and 1.

5. Find an invertible matrix \(P \) for which \(PAP^{-1} = B \) where
 \[
 A = \begin{pmatrix} 1 & 2018 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 41 \\ 0 & 1 \end{pmatrix}
 \]