1. Let \(f(x) = \int_0^x \cos(t^2) \, dt \). Write the Maclaurin series (Taylor series centered at 0) for each of the following functions of \(x \).

 (i) \(\cos(x) \)
 (ii) \(\cos(x^2) \)
 (iii) \(f(x) \)
 (iv) \(g(x) = f(x^2) \)

2. Find the equations of all lines which are tangent to the curve \(y = x^3 - x \) and are perpendicular to the line \(y = 4x + 5 \).

3. Let a curve be given by the parametric equations

 \[
 x = e^t \sin t - e^t \cos t \\
 y = e^t \sin t + e^t \cos t
 \]

 Find the arclength of the curve from \(t = 0 \) to \(t = \ln(2) \).

4. Suppose that \(x \) and \(y \) are given as functions of \(s \) and \(t \) by the equations

 \[
 x = e^{st} \\
 y = s^2 t^3
 \]

 Suppose also that \(s \) is a function of \(t \) such that \(ds/dt = (1 + t^3)^{-1} \). Then \(y \) can be regarded as a function of \(x \). Compute \(dy/dx \) in terms of \(s \) and \(t \).

5. Let \(f(x) = \begin{cases}
 x^2 \sin(1/x) & \text{if } x \neq 0 \\
 0 & \text{if } x = 0
\end{cases} \)

 (i) Show that \(\lim_{x \to 0} f'(x) \) does not exist.

 (ii) Using the definition of the derivative, show that \(f'(0) = 0 \).