
ALBERT A. BENNETT CALCULUS PRIZE EXAM May 4 2013

1. For each real number a, evaluate
∫∞
0
eax cos(x) dx or explain why the integral diverges.

ANSWER The antiderivative I =
∫
eax cos(x) dx may be determined by two appli-

cations of integration-by-parts: we discover

I = eax sin(x)− a
∫
eax sin(x) dx

but similarly we find∫
eax sin(x) dx = −eax cos(x) + a

∫
eax cos(x) dx

so that

I = eax sin(x) + a eax cos(x)− a2I

from which we deduce (as can be checked by differentiating!) that

(a2 + 1)I = eax(a cos(x) + sin(x))

Thus the integral from 0 to T is

1

(a2 + 1)

(
eaT (a cos(T ) + sin(T ))− a

)
For negative a, the exponential factor decreases to zero as T increases, while the other

factors stay bounded, so the improper integral converges to −a
(a2+1) . When a = 0 the

integral oscillates with T so no limit exists, and likewise when a > 0 the magnitudes are

unbounded and so the improper integral diverges.

2. Evaluate
∑∞
n=2

1
(n−1)(n+2) or explain why the series diverges.

ANSWER Using partial fractions (say) we discover that 1
(n−1)(n+2) may be written

1/3
(n−1) −

1/3
(n+2) . Writing out the first few terms we recognize a telescoping sum:(

1/3

1
− 1/3

4

)
+

(
1/3

2
− 1/3

5

)
+

(
1/3

3
− 1/3

6

)
+

(
1/3

4
− 1/3

7

)
+ . . .

When we cancel corresponding parts only (1/3)
(
1
1 + 1

2 + 1
3

)
remains, so the sum is 11/18.



3. The polar equation of the curve shown in the attached figure is r = e−θ/10. Assume

that the pattern of shaded and unshaded sections continues ad infinitum. What is the

area of the shaded region? Simplify your answer as much as possible.

ANSWER The figure shows a sequence of arcs that look nearly like semicircles in

the top half of the plane. We can get the area of the shaded region as an alternating sum:

it’s the area beneath the outermost curve, minus the area under the second curve, plus

the area under the third, and so on. It is clear from the geometry that these terms are

steadily decreasing in magnitude and tend to zero, so this alternating sum will converge.

To get the actual sum, we need only get an expression for the area of the region beneath

each of these curves.

We can find the area inside any of those curves with an integral 1
2

∫
r2 dθ. The

integrand is e−θ/5, whose anti-derivative is −5e−θ/5. Thus the area inside the outermost

curve is 1
2 (−5e−π/5 + 5e−0/5) and similarly the area inside the next arc is 1

2 (−5e−3π/5 +

5e−2π/5) and so on. Writing X for e−π/5, the successive areas are thus 5
2 (1−X), 52 (X2 −

X3), 52 (X4 −X5), . . . Observe that each of these terms is X2 as large as the one before it.

Therefore, we find the total area of all the shaded regions to be the alternating sum

5

2
(1−X)(1−X2 +X4 −X6 + . . .) =

5

2
(1−X)/(1 +X2),

using the formula for the sum of a geometric series. That is, the area is

5(1− e−π/5)/2(1 + e−2π/5).

(The numerical value of this is approximately 0.908 — a little more than half the area π/2

of the upper unit half-disk, which seems visually appropriate.)



4. Here are four lines in space:

L1 : {x = 1, y = 0} L2 : {y = 1, z = 0} L3 : {z = 1, x = 0} L4 : {x = y = −6z}

For partial credit, find a line that intersects both L1 and L2. For full credit, find a

line that intersects all three of L1, L2, and L3. For extra credit, find a line that meets

all four of the lines Li.

ANSWER For the first task you need only pick any points P1 ∈ L1 and P2 ∈ L2

and construct the line that joins them. For example if P1 = (1, 0, 0) and P2 = (0, 1, 0) then

we construct the line {x+ y = 1, z = 0} in the x, y plane. (Some students also noted that

we can simply combine the non-contradictory conditions used to define L1 and L2 in the

first place: the line {x = 1, z = 0} meets both L1 and L2.)

For the second task we don’t have so much liberty — for example the line we have just

constructed in the plane z = 0 does not intersect the line L3 in the parallel plane z = 1.

But we might yet succeed if we choose different points of intersections with the first two

lines. Writing P1 = (1, 0, a) and P2 = (b, 1, 0) for those two points, the line we construct

may be written in parametric form as the set of points

P1 + t(P2 − P1) = (1, 0, a) + t(b− 1, 1,−a)

In order for this line to meet L3 there must be a value of t that makes z = a− ta equal to

1 and x = 1 + t(b−1) equal to zero. The first condition requires at = a−1 and the second

requires (b− 1)t = −1, and these conditions are contradictory unless (b− 1)(a− 1) = −a
(and b 6= 1 and a 6= 0). In short, we can still pick P1 to be any point on the first line except

(1, 0, 0) or (1, 0, 1), and then compute a matching P2 and build the line joining P1 and P2

as before. If for example we use a = −1 we need b = 1/2, giving us the line expressed

parametrically as

(1, 0,−1) + t(−1/2, 1, 1)

which crosses L3 when t = 2, i.e. at the point P3 = (0, 2, 1). (You can also approach the

problem a bit more symmetrically: you need to find three collinear points (1, 0, a), (b, 1, 0),

and (0, c, 1); it turns out they are collinear iff b(a− 1) = c(b− 1) = a(c− 1) = abc = −1.

There are infinitely many triples (a, b, c) that satisfy these equations.)

Finally in order to meet the line L4 too, we obtain another constraint on a and b in

the same way: the line joining P1 and P2 will meet L3 only if (b−1)(a−1) = −a as before,

and likewise we find it will meet L4 only if there is a time t′ when the point

(x, y, z) = (1, 0, a)+t′(b−1, 1,−a) = (1+t′(b−1), t′, a(1−t′)) = (1−at′/(a−1), t′, a(1−t′))



satisfies x = y = −6z. The first equation holds iff t′ = (a − 1)/(2a − 1) and the second

holds iff t′ = 6a/(6a−1); these two equations are consistent iff (a−1)(6a−1) = 6a(2a−1),

i.e. 6a2 + a− 1 = 0, a quadratic equation whose roots are a = 1/3 and a = −1/2. In each

case we compute b using the constraint imposed by line L3: b = 1/2 resp. b = 2/3. Then

we can draw our lines: (x, y, z) = (1 + t/2, t, (1− t)/3) or ((2 + t)/3, 1− t,−t/2) It is easily

confirmed that each of these two lines meets each of the four Li.

In summary, there are exactly TWO lines meeting each of the four given lines Li.

This is true in general: given a “generic” set of four lines in 3-space there are exactly

two lines that meet all four of them. (However, this statement only becomes precise when

we allow for complex numbers and “points at infinity”.) You might enjoy extending the

computations used above to cover the general case!

5. Find a differentiable function f(x, y) defined in the first quadrant of the plane which

has this property: at each point (x, y) the gradient ∇f(x, y) is perpendicular to the

vector 〈x, y〉 pointing directly away from the origin.

For extra credit: Is there such a function f defined on all of the plane?

ANSWER Of course a constant function f meets the desired condition! That’s not

what was intended, however, so let’s think about non-constant f .

The given condition is equivalent to requiring the directional derivative Dv(f) to

vanish where v is the vector pointing away from the origin. It follows that f will stay

constant on rays from the origin, so that f depends only on the polar coordinate θ. So for

example we may take f(x, y) = tan(θ) = y/x; it is easily checked that the gradient vector

in this case, which is 〈−y/x2, 1/x〉 is perpendicular to 〈x, y〉.

But θ is only continuous on quadrants, or at most on a portion of the plane which

excludes some curve stretching from the origin to infinity. Indeed, since the gradient points

in the direction of greatest increase, it is never possible for a closed curve to follow the

gradient of any function – how can you keep climbing uphill and yet return to your start?

In our case, any circle centered at the origin would be such a curve, so no such f can exist.


