Problem 1

Proof. We compute the first few terms of the sequence as follows:

$$f_0(11) = 11$$

$$f_1(11) = 1^2 + 1^2 = 2$$

$$f_2(11) = 2^2 = 4$$

$$f_3(11) = 4^2 = 16$$

$$f_4(11) = 1^2 + 6^2 = 37$$

$$f_5(11) = 3^2 + 7^2 = 58$$

$$f_6(11) = 5^2 + 8^2 = 89$$

$$f_7(11) = 8^2 + 9^2 = 145$$

$$f_8(11) = 1^2 + 4^2 + 5^2 = 42$$

$$f_9(11) = 4^2 + 2^2 = 20$$

$$f_{10}(11) = 4$$
:

and we see the sequence is eventually periodic. In particular if $n \ge 10$ we have $f_n(11) = f_{n-8}(11)$. Thus $f_{2016}(11) = f_8(11) = 42$.

Problem 2

Proof. Note that the problem is equivalent to finding the number of triples (k, a, r) such that $n = ka_1 + r$ where $0 \le r \le k - 1$. To see this take a sequence $a_1 \le a_2 \le \cdots \le a_k \le a_1 + 1$ and note that if $n = a_1 + a_2 + \cdots + a_k$ then $n = ka_1 + r$ where $0 \le r \le k - 1$ with $r = (a_2 - a_1) + \cdots + (a_k - a_1)$. On the other hand if we have a triple (k, a, r) such that $n = ka_1 + r$ with $0 \le r \le k - 1$ define $a_i = a$ for $1 \le i \le k - r + 1$ and $a_i = a + 1$ for $k - r + 1 \le i \le k$. Then $a_1 + a_2 + \cdots + a_k = (k - r + 1)a + (k - k + r)(a + 1) = ka + r = n$. Thus we have a 1-to-1 correspondence between the desired decompositions $a_1 \le a_2 \le \cdots \le a_k \le a_1 + 1$ and the defined triples (k, a, r). However the number of such triples is n: for each $1 \le k \le n$ take

 $r=n \mod k$ and $a=\frac{n-r}{k}$ and note n=ak+r and $0 \le r \le k-1$. Thus we have c(n)=n.

Problem 3

Proof. Note $1 + x \le 2^0(1 + x)$ trivially and 2(1 + xy) - (1 + x)(1 + y) = 2 + 2xy - 1 - x - y - xy = 1 - x - y + xy = (1 - x)(1 - y) > 0 since $x, y \in [0, 1]$ which implies $(1+x)(1+y) \le 2(1+xy)$. We proceed to prove the statement by induction. Suppose the statement holds for n. Then

$$(1+x_1)(1+x_2)\cdots(1+x_n) \le 2^{n-1}(1+x_1\cdots x_n)$$

and take $x_{n+1} \in [0,1]$. Then

$$(1+x_1)(1+x_2)\cdots(1+x_n)(1+x_{n+1}) \le 2^{n-1}(1+x_1\cdots x_n)(1+x_{n+1})$$
$$\le 2^{n-1}\cdot 2(1+x_1\cdots x_nx_{n+1}) = 2^n(1+x_1\cdots x_{n+1})$$

where we have applied the inequality for n=2 to get the last line and we were justified since $x_1 \cdots x_n \in [0,1]$.

Problem 5

Proof. Note that $\sqrt{2}, \sqrt{3}, \sqrt{6} \notin \mathbb{Q}$. Suppose (a, b, c) is a triple of integers with $a + b\sqrt{2} + c\sqrt{3} = 0$. Then we would have

$$(-a)^2 = (b\sqrt{2} + c\sqrt{3})^2 = 2b^2 + 3c^2 + 2bc\sqrt{6}.$$

Now the left hand side is an integer squared and so is also an integer which implies $2b^2+3c^2+2bc\sqrt{6}\in\mathbb{Z}$. However $2b^2$ and $3c^2$ are also integers so we conclude that $2bc\sqrt{6}\in\mathbb{Z}$. However $\sqrt{6}$ is not rational which implies that b=0 or c=0. In the first case we would have $a+c\sqrt{3}=0$ which is only satisfied if a=c=0 since $\sqrt{3}\notin\mathbb{Q}$ and in the second case we would have $a+b\sqrt{2}=0$ which is only satisfied if a=b=0 since $\sqrt{2}\notin\mathbb{Q}$. In either case we conclude that a=b=c=0.