2)
$$\sum_{n=2}^{\infty} \ln((n^3-1)/(n^3+1)) = \sum_{n=2}^{\infty} \ln((n-1)(n^2+n+1)/(n+1)(n^2-n+1))$$

$$= \sum_{n=2}^{\infty} \ln((n-1)/(n+1)) + \sum_{n=2}^{\infty} \ln((n^2+n+1)/(n^2-n+1))$$

$$= \sum_{n=2}^{\infty} \ln(n-1) - \ln(n+1) + \sum_{n=2}^{\infty} \ln(n^2 + n + 1) - \ln(n^2 - n + 1)$$

These sums telescope since $ln((n+1)^2 - n + 1) = ln(n^2 + n + 1)$, and ln((n+2) - 1) = ln(n+1).

Thus
$$\sum_{n=2}^{\infty} ln((n^3-1)/(n^3+1)) = ln(1) + ln(2) - ln(2^2-2+1) = ln(2) - ln(3)$$
.

3) Clearly $\sum_{j=0}^{\infty} x_j^2 > 0$.

In addition,
$$\sum_{j=0}^{\infty}x_j^2<\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}x_ix_j=(\sum_{j=0}^{\infty}x_j)^2=A^2$$

So that $0 < \sum_{j=0}^{\infty} x_j^2 < A^2$.

WLOG A = 1.

Thus it suffices to show that $\forall s, \quad 0 < s < 1, \exists x_j \text{ such that } \sum_{j=0}^{\infty} x_j = 1 \text{ and } \sum_{j=0}^{\infty} x_j^2 = s.$

Let $x_j = ar^j$ with r = (1 - s)/(1 + s), and with a = 1 - (1 - s)/(1 + s).

Since
$$0 < s < 1$$
, $0 < (1-s)/(1+s) < 1$, so that $\sum_{j=0}^{\infty} x_j = (1-(1-s)/(1+s))/(1-(1-s)/(1+s)) = 1$.

Also,
$$x_j^2 = a^2(r^2)^j$$
, so that $\sum_{j=0}^{\infty} x_j^2 = \frac{(1-(1-s)/(1+s))^2}{1-((1-s)/(1+s))^2}$
Then calculation shows that $\frac{(1-(1-s)/(1+s))^2}{1-((1-s)/(1+s))^2} = s$.

6) Lemma: If $p(x) \ge 0 \,\forall x$, then if p(x) has a root at a, it has a double root at a,

i.e., If p(x) = q(x)(x - a) for some polynomial q(x), then q(a) = 0.

Take $x_n < a$, $y_n > a$ such that $\lim x_n = \lim y_n = a$.

$$q(x_n) \le 0$$
 since $x_n - a < 0$ and $p(x_n) \ge 0$. Similarly, $q(y_n) \ge 0$.

By the continuity of q(x), $q(a) = \lim_{n \to \infty} q(x_n) = \lim_{n \to \infty} q(y_n)$.

But $q(x_n) \le 0$ and $q(y_n) \ge 0$, so that $\lim_{n \to \infty} q(x_n) \le 0$ and $\lim_{n \to \infty} q(y_n) \ge 0$.

Thus q(a) = 0.

Let $M_1 = \text{Inf } \{p(x)\}.$

 M_1 exists because p(x) is bounded from below by 0 and by the least-upper-bound property of R.

Moreover, $\exists x_l$ such that $p(x_l) = M_1$. If p(x) is constant, than $M_1 = p(0)$ so that it is trivial.

Note that for $x \to \pm \infty$, $p(x) \to \infty$.

Also, for any infimum of a set S, $\exists a_n \in S$ such that $\lim a_n = \inf S$.

Thus $\exists z_n \text{ such that } p(z_n) \to M_1$.

If z_n is bounded, then by the Bolzano–Weierstrass theorem, there exists a subsequence

 z_k such that $\lim z_k \to z$ for some z. By the continuity of p(x),

 $\lim p(z_k) = p(z) = M_1.$

But if z_n is not bounded, i.e $\lim z_n = \pm \infty$, then

 $\lim p(z_n) = \infty$ which is clearly not a lower bound.

Let
$$D(x) = p(x) - M_1$$
.

Then by above, $\exists x_1$ such that $D(x_1) = 0$. Clearly $D(x) \ge 0$, so that by the lemma,

D(x) has a double root at x_1 , i.e., $D(x) = (x - x_1)^2 p_1(x)$ for some polynomial $p_1(x) \ge 0$.

Thus
$$p(x) = M_1 + (x - x_1)^2 p_1(x)$$
.

However, $p_1(x) \ge 0$ so that, by the exact same process as above,

$$p_1(x) = M_2 + (x - x_2)^2 p_2(x)$$
 for $M_2 \ge 0, x_2 \in R$, and $p_2(x) \ge 0$ some polynomial.

In general,
$$p_{n-1}(x) = M_n + (x - x_n)^2 p_n(x)$$
.

Since p(x) has finite order, $\exists m$ such that $p_m(x) = 0$.

Then repeatedly applying this relation,

$$p(x) = M_1 + (x - x_1)^2 (M_2 + (x - x_2)^2 (M_3 + (x - x_3)^2 (\dots (M_m + (x - x_m)^2 * 0) \dots)))$$

$$= M_1 + M_2 (x - x_1)^2 + M_3 (x - x_1)^2 (x - x_2)^2 + \dots + M_m (x - x_1)^2 (x - x_2)^2 \dots (x - x_{m-1})^2$$

$$= (\sqrt{M_1})^2 + (\sqrt{M_2}(x - x_1))^2 + (\sqrt{M_3}(x - x_1)(x - x_2))^2 + \dots + (\sqrt{M_m}(x - x_1)(x - x_2) \dots (x - x_{m-1}))^2,$$

So that p(x) is a sum of squares.