
I’d like to provide a little background, and a little tease, for question 1.

First of all you have to recognize that factoring integers is hard, much harder than
multiplying. If you have to multiply two 100-digit numbers the way you learned in grade
school, that will mean multiplying each of the 10,000 pairs of digits (each pair contains one
digit from each of the numbers you’re trying to multiply), simply using your times tables,
and then adding up the (up to 100) numbers in each of the (up to 200) columns. That’s
a lot of little steps, maybe some tens of thousands of them, but each can be done in one
clock tick on a computer, so those big numbers get multiplied in a fraction of a second. Of
course it takes longer to multiply bigger numbers: 200-digit numbers would take about 4
times as long.

By contrast, factoring a 100-digit number N by the grade-school algorithm would
take much longer. You look for factors using trial division, testing whether N is an even
multiple of 2, then 3, then 4, then . . .. You may know you only need to test with divisors
up to

√
N , and you only need to test the divisors that are themselves prime, but still, if

N is a 100-digit number, that would mean something on the order of 1047 trial divisions.
Even if each test could be accomplished in a single computer clock tick, this task could
not be computed on my computer in less than the age of the universe!

This is not to say one HAS to use the grade-school algorithm, and indeed much faster
algorithms are known. It’s not unreasonable these days to expect the factorization of a
100-digit number in a few hours! But we still say factorization is very hard; the amount
of time needed to factor a big number doubles every time we add a few digits, even with
the best algorithms and the best machines. Attacking a 200-digit number is still pretty
hopeless.

More precisely, what we are discussing here is an estimate of how long it takes to
perform these two tasks with n-digit numbers. For multiplication, the time needed is
roughly C n2 for some constant C; for factorization it’s something like 10Cn. We say
the first task can be computed “in polynomial time” but the second seems to require
“exponential time”. The holy grail in this particular business is to find a polynomial-time
factorization algorithm.

Look up the Euclidean Algorithm. It’s a simple way to take two integers and find
their greatest common divisor. And it runs very quickly; the time needed is no more than
a polynomial in the number of digits in the two integer inputs.

So here’s an idea for factoring a big number N . First compute gcd(N, 6) to see whether
N is divisible by any 1- or 2-bit primes. Then compute gcd(N, 35) to see if it has any 3-bit
prime factors; then gcd(N, 143) checks for 4-bit prime divisors, and so on. Each one of
these steps requires the Euclidean Algorithm, but I just told you that algorithm is fast,
and if N itself is an n-bit number, then you would discover all its prime divisors by the
time you had computed the gcd of N with the product of all n/2-bit primes. That is: I
am asking you to run a polynomial-time algorithm, a polynomial number of times; thus
the total run time would be a polynomial in n. See? There you go! a polynomial-time
algorithm to factor any big integer. (I’m lying a little; there are issues related to repeated
factors, and to pairs of prime factors that have the same numbers of digits (or bits). But
there are ways around those issues, and maybe no one cares about those issues anyway.)

There’s only one catch here: if you wanted to encode all this into a computer program,

1



you would have to pre-compute the numbers 6, 35, 143, etc. that I describe in the previous
paragraph., Already the product of the 5-bit primes (17,19,23,29,31) is getting pretty large,
and there doesn’t seem to be a pretty way to write it down or even to compute it, short
of making a long list of all prime numbers.

A possible rescue is indicated in Problem 1 of this week’s problems: we don’t need
literally to compute the product Pn of all the n-bit primes; it’s sufficient to find a number

divisible by all these primes, and now you know one such number: it’s Ck =

(
2k
k

)
, where

k = 2n−1. So our computer program to factor n-bit numbers only needs to compute the
first n numbers in the sequence (

4
2

)
,

(
8
4

)
,

(
16
8

)
, . . .

It’s just a select group of numbers down the middle column of Pascal’s Triangle. Imagine
— we could factor thousand-bit numbers N (which no one else can do yet!) by running our
polynomial-time algorithm that computes gcd(N,Ck) for the first thousand or so numbers
Ck in the the list above. (And don’t be put off by the size of these numbers Ck : since
we’re only using them to compute a gcd with N , it will be sufficient to replace Ck with its
reduction modulo N , which is then another thousand-digit number, nothing larger. Your
computer can handle this!)

So, OK, here’s the challenge: find a fast way to compute the above number Ck (modulo
N). I only want a small bunch of these numbers (yes, 1000 is “small”!) but the problem
is that they are pretty sparse in Pascal’s triangle; the thousandth one is in row 21000 of
Pascal’s triangle, so I require a means of getting these Ck that does not require computing
the entire central column of Pascal’s Triangle!

Now here’s where I get sneaky. There is, at least, a way to compute the central column
of PT without filling in all the other entries. It turns out that the numbers we need are
precisely the coefficients of the Taylor Series of 1/

√
1− 4x! Here are the first few terms:

1 + 2t + 6t2 + 20t3 + 70t4 + 252t5 + 924t6 + 3432t7 + 12870t8 + 48620t9 + 184756t10 + 705432t11

+ 2704156t12 + 10400600t13 + 40116600t14 + 155117520t15 + 601080390t16 + 2333606220t17 + . . .

Our focus is on C2 = 6, C4 = 70, C8 = 12870, C16 = 601080390, and the other coefficients

of t2
k

. (I invite you to check that C16 is indeed divisible by all the 5-bit primes, each to
the first power, and by no larger primes. It is divisible by 2 · 32 · 5 as well, but that does
not really present a problem for our proposed factorization algorithm.

To summarize everything so far, we see that (modulo a few technical details that
are not usually important) it is possible to factor any n-bit number N in an amount
of time which is polynomial in n, if we can first compute (quickly) the n numbers Ck

(k = 2, 4, 8, . . . 2n) modulo N .
Well, here’s another surprise: I can do that! Sort of. What I can do is describe an

iterative process that computes the above power series; with each iteration we get twice
as many of the leading coefficients correct. So the initial iteration gives us C2 = 6; the
next iteration has more correct terms including C4 = 70; the next iteration has twice as

2



many correct terms, including C8 = 12870, etc. Obviously we only need to carry out the
iteration n times, which is to say the iteration process is “fast”. Oh and as a bonus we
can do all the calculations mod N along the way, so that none of our coefficients will have
more than n bits while we compute with it.

Here’s the recipe. You remember Newton’s Algorithm from Calculus I ? It iteratively
solves equations of the form f(x) = 0, starting with an initial approximation x0. Each
iteration simply replaces an approximation xk with a new one defined by

xk+1 = xk −
f(xk)

f ′(xk)

You remember that formula, right? In Calc-I you apply this to (approximately) solve
equations like x2−5 = 0. Well, how about if you use it to solve the equation f(x) = 0 where
f(x) = (1/x2) − a for some number a? You already know the solution to this equation:
it’s x = 1/

√
a. But the point is that Newton’s method allows you to approximate this

solution numerically. And (drumroll) for this particular function f , the Newton iteration
formula simplifies into something very striking:

xk+1 = xk −
1/(xk)2 − a

−2/(xk)3
= xk + xk

1− ax2
k

2
= xk(3− ax2

k)/2

which is striking because it involves no division (except the “2”, which is a “bit-shift”).
Well, (in a way that can be justified using some funny mathematical frameworks) we

can use precisely this recursion, starting with x0 = 1, to get better an better approxima-
tions to 1/

√
a, even when a is a polynomial like 1−4t! Each approximation xk will then be

a polynomial in t, and as it turns out each xk will have twice as many correct coefficients
as its predecessor. I invite you to work this out too: we get

x0 = 1

x1 = 1 + 2t

x2 = 1 + 2t + 6t2 + 20t3 + 16t4

x3 = 1 + 2t + 6t2 + 20t3 + 70t4 + 252t5 + 924t6 + 3432t7 + 8496t8 + . . .

Note that as a bonus the calculations can all be done modulo N , for any odd modulus N .
To summarize: here is all you need to do to factor an n-bit number N . Start with

x0 = 1. Then, for k = 1, 2, . . . , n, compute xk by the above recursive formula (all done

modulo N if you like), pick out Ck, the coefficient of t2
k−1

in xk, then compute gcd(N,Ck),
which will simply be the product of all the k-bit primes that divide N .

Well then, is this a polynomial-time algorithm to factor big integers? Turns out there’s
a little technical issue running this algorithm. I invite you to try to discover what goes
wrong (that part I know) and how to fix it (that part I can’t do).

So, we’re not quite there yet: it’s still hard to factor big integers. But it was only a
few years ago that they were saying it’s even hard to determine for sure whether a number
is prime, but then a polynomial-time primality-testing algorithm was invented (by some
high school students!) so who knows, perhaps there are enough ideas here to allow you to
develop the first polynomial-time factorization algorithm!

3


