> (Equilateral triangle with lattice vertices) Prove that there does not exist an equilateral triangle with lattice point vertices in the plane.

Solution:

Suppose to the contrary there exists an equilateral triangle with integer coefficients in the plane. We will find its area in two different ways. First we use Pick's Theorem which states:

Theorem 1 (Picks Theorem in 2-D). Let P be a simple polygon with integer coordinates. Let I and B be the number of lattice points on the interior and on the boundary of P respectively.
Then we can express the area of P as

$$
A=I+\frac{B}{2}-1
$$

From Pick's Theorem, it follows that since I and B are integers, our triangle will have rational area.

Now we will compute the area of our triangle using the standard area formula for an equilateral triangle with side length s

$$
A=\frac{\sqrt{3} s^{2}}{4}
$$

Since our first calculation revealed that $A \in \mathbb{Q}$. It follows that $\frac{\sqrt{3} s^{2}}{4}$ must be rational. However, we will now show that $\frac{\sqrt{3} s^{2}}{4}$ is irrational.

To see why, consider any two vertices our our triangle and label them $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ where $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{Z}$. The squared distance between these points is s^{2}, and using the distance formula we get

$$
s^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \in \mathbb{Z}
$$

If s^{2} is an integer then this implies that $\frac{x^{2}}{4}$ is rational and thus $\sqrt{3}$ is rational which is a contradiction. ${ }^{1}$ Therefore, there does not exist an equilateral triangle with integer coordinates.

[^0]
[^0]: ${ }^{1}$ This can be shown using the classic irrationality proof technique.

