Q.3) Let $f(x)=\frac{1}{4+x^{4}}+A$ where A is constant, and let $F(x)$ be an antiderivative of f. Find a value of A for which F has exactly one critical point.

Solution:

Since $F(x)=\int f(x) d x$, if we want to solve for the critical points of $F(x)$, we want to solve the equation

$$
\frac{d}{d x} F(x)=0
$$

However, by the fundamental theorem of calculus, this reduces to

$$
f(x)=0
$$

The problem is now reduced to finding A such that $f(x)$ has only one real root. Since $4+x^{4}>0$ for all real x, we can solve this directly.

$$
\begin{array}{r}
\frac{1}{4+x^{4}}+A=0 \\
1+A\left(4+x^{4}\right)=0 \\
(1+4 A)+4 x^{4}=0 \tag{1}
\end{array}
$$

This is an equation of the form $x^{4}+c$ for some constant c. The only value of c for which a quartic of this form has single real solution is $c=0$. This implies that $A=-\frac{1}{4}$ is the value of A for which F has exactly one critical point.

