Q.4) Let $f(n)=\sum_{k=2}^{\infty} \frac{1}{k^{n} \cdot k!}$. Compute $\sum_{n=2}^{\infty} f(n)$

Solution:

Let S denote the sum we would like to calculate. We can write S as

$$
\begin{equation*}
S=\sum_{n=2}^{\infty}\left(\sum_{k=2}^{\infty} \frac{1}{k^{n} \cdot k!}\right) \tag{1}
\end{equation*}
$$

If we switch the order of summation, we can do the following

$$
\begin{align*}
S & =\sum_{k=2}^{\infty}\left(\sum_{n=2}^{\infty} \frac{1}{k^{n} \cdot k!}\right) \tag{2}\\
& =\sum_{k=2}^{\infty} \frac{1}{k!}\left(\sum_{n=2}^{\infty} \frac{1}{k^{n}}\right) \tag{3}\\
& =\sum_{k=2}^{\infty} \frac{1}{k!}\left(\frac{1}{1-\frac{1}{k}}-1-\frac{1}{k}\right) \tag{4}\\
& =\sum_{k=2}^{\infty} \frac{1}{k!}\left(\frac{k}{k-1}-\frac{k+1}{k}\right) \tag{5}\\
& =\sum_{k=2}^{\infty} \frac{1}{(k-1)!\cdot(k-1)}-\sum_{k=2}^{\infty} \frac{k+1}{k!\cdot k} \tag{6}\\
& =\sum_{k=2}^{\infty} \frac{1}{(k-1)!\cdot(k-1)}-\sum_{k=2}^{\infty} \frac{1}{k!\cdot k}-\sum_{k=2}^{\infty} \frac{1}{k!} \tag{7}\\
& =\left(\sum_{k=1}^{\infty} \frac{1}{k!\cdot k}-\sum_{k=2}^{\infty} \frac{1}{k!\cdot k}\right)-\sum_{k=2}^{\infty} \frac{1}{k!} \tag{8}\\
& =1-\left(\sum_{k=0}^{\infty} \frac{1}{k!}-1-1\right) \tag{9}\\
& =3-e \tag{10}
\end{align*}
$$

Some important notes to make are that we can expand (3) using a convergent geometric series since the ratio $\left|\frac{1}{k}\right|<1$ for $k \geq 2$, but we must account for the two missing terms for $n=1$ and $n=0$. In (7) we re-index our first sum so that it will telescope with the second sum. Lastly, in (8) we re-index the final sum so that we will get the Taylor expansion of e^{x} at $x=0$.

