Q.5) Show that this improper integral converges:

$$
\int_{0}^{\infty} \sin (x) \sin \left(x^{2}\right) d x
$$

Solution: If we find a function $f(x)$ such that $f(x) \geq \sin (x) \sin \left(x^{2}\right)$ for all $x \geq 0$ and $\int_{0}^{\infty} f(x) d x<\infty$, then by the comparison test for improper integrals ${ }^{1}$, we are done.

We notice that $|\sin (x)| \leq 1$ so it might be worth trying to evaluate the integral $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$. It seems there is no straightforward way to proceed but recall $\sin (t)=\operatorname{Im}\left[e^{i t}\right]$. Using this we can write our new integral as

$$
\begin{align*}
I & =\int_{0}^{\infty} \sin \left(x^{2}\right) d x \\
& =\int_{0}^{\infty} \operatorname{Im}\left[e^{i x^{2}}\right] d x \\
& =\operatorname{Im}\left[\int_{0}^{\infty} e^{i x^{2}} d x\right] \tag{1}
\end{align*}
$$

Next, observe that (1) looks very similar to a Gaussian integral! We can achieve a Gaussian integral if we notice $i=-1 / i$. Our integral now becomes

$$
\begin{equation*}
I=\operatorname{Im}\left[\int_{0}^{\infty} e^{-(1 / i) x^{2}} d x\right] \tag{2}
\end{equation*}
$$

But this is a half of a Gaussian integral of the form $\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\pi / a}$ which can be evaluated using the standard trick for Gaussian integrals ${ }^{2}$. Substituting half of this value with $a=1$ / i for our integral in (2), we find

$$
\begin{equation*}
I=\operatorname{Im}\left[\frac{1}{2} \sqrt{\pi i}\right] \tag{3}
\end{equation*}
$$

To finish, we must find the imaginary part of \sqrt{i}. If we write i using the complex exponential $\sqrt{i}=\sqrt{e^{i \pi / 2}}=e^{i \pi / 4}=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}$. Therefore, the imaginary part and thus the value of (3) and thus the value of I is $\sqrt{\frac{\pi}{8}}$. Since I has finite value and the integrand is always greater than the desired function, the integral $\int_{0}^{\infty} \sin (x) \sin \left(x^{2}\right) d x$ converges.

[^0]
[^0]: ${ }^{1}$ see https://tutorial.math.lamar.edu/classes/calcii/ImproperIntegralsCompTest.aspx
 ${ }^{2}$ see https://en.wikipedia.org/wiki/Gaussian_integral

