Q.5) Show that this improper integral converges:

$$\int_0^\infty \sin(x)\sin(x^2)dx$$

Solution: If we find a function f(x) such that $f(x) \ge \sin(x)\sin(x^2)$ for all $x \ge 0$ and $\int_0^{\infty} f(x)dx < \infty$, then by the comparison test for improper integrals¹, we are done.

We notice that $|\sin(x)| \le 1$ so it might be worth trying to evaluate the integral $\int_0^\infty \sin(x^2) dx$. It seems there is no straightforward way to proceed but recall $\sin(t) = \text{Im}[e^{it}]$. Using this we can write our new integral as

$$I = \int_0^\infty \sin(x^2) dx$$

= $\int_0^\infty \operatorname{Im}[e^{ix^2}] dx$
= $\operatorname{Im}\left[\int_0^\infty e^{ix^2} dx\right]$ (1)

Next, observe that (1) looks very similar to a Gaussian integral! We can achieve a Gaussian integral if we notice i = -1/i. Our integral now becomes

$$I = \operatorname{Im}\left[\int_0^\infty e^{-(1/i)x^2} dx\right].$$
 (2)

But this is a half of a Gaussian integral of the form $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\pi/a}$ which can be evaluated using the standard trick for Gaussian integrals². Substituting half of this value with a = 1/i for our integral in (2), we find

$$I = \operatorname{Im}[\frac{1}{2}\sqrt{\pi i}]. \tag{3}$$

To finish, we must find the imaginary part of \sqrt{i} . If we write *i* using the complex exponential $\sqrt{i} = \sqrt{e^{i\pi/2}} = e^{i\pi/4} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$. Therefore, the imaginary part and thus the value of (3) and thus the value of *I* is $\sqrt{\frac{\pi}{8}}$. Since *I* has finite value and the integrand is always greater than the desired function, the integral $\int_0^\infty \sin(x) \sin(x^2) dx$ converges.

¹see https://tutorial.math.lamar.edu/classes/calcii/ImproperIntegralsCompTest.aspx ²see https://en.wikipedia.org/wiki/Gaussian_integral