Here are some problems, some of them taken from actual Putnam exams, all of them really "just" calculus.

1. Evaluate $\int_{0}^{12} \frac{x^{2}}{x^{2}+(12-x)^{2}} d x$
2. Assuming $a>0$ and $b>0$, evaluate

$$
\lim _{n \rightarrow \infty} n^{b-a} \frac{1^{a}+2^{a}+\ldots+n^{a}}{1^{b}+2^{b}+\ldots+n^{b}}
$$

3. Let $f(x)=\frac{1}{4+x^{4}}+A$ where A is constant, and let $F(x)$ be an antiderivative of f. Find a value of A for which F has exactly one critical point.
4. Let $f(n)=\sum_{k=2}^{\infty} \frac{1}{k^{n} \cdot k!}$. Compute $\sum_{n=2}^{\infty} f(n)$.
5. Show that this improper integral converges:

$$
\int_{0}^{\infty} \sin (x) \sin \left(x^{2}\right) d x
$$

6. Let $f(x)=x^{3}-x^{2}$. For a given value of c, the graph of $f(x)$, together with the graph of $y=x+c$, split the plane up into regions. Suppose that c is such that exactly two of these regions have finite area. Find the value of c that minimizes the sum of the areas of these two regions.
7. Compute

$$
\int_{0}^{\pi / 2} \frac{d x}{(\sqrt{\sin (x)}+\sqrt{\cos (x)})^{4}}
$$

8. Find the maximum of $\int_{0}^{1} f(x)^{3} d x$ given the constraints that $-1 \leq f(x) \leq 1$ for all x and $\int_{0}^{1} f(x) d x=0$.
