Putnam Practice: Number Theory

7. Let $f(z)=a z^{4}+b z^{3}+c z^{2}+d z+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e are integers and $\mathrm{a} \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and if $r_{1}+r_{2} \neq r_{3}+r_{4}$ then $r_{1} r_{2}$ is a rational number too.

If you multiply out $a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ and look at the constant term, you can see that $e=a r_{1} r_{2} r_{3} r_{4}$, which is an integer. Similarly, if you focus on the z^{3} term, you can see that $b=-a\left(r_{1}+r_{2}+r_{3}+r_{4}\right)$, which is also an integer.

By rearranging, you can see that $-\frac{b}{a}-\left(r_{1}+r_{2}\right)=\left(r_{3}+r_{4}\right)$. Notice that $b, a,\left(r_{1}+r_{2}\right)$ are all rational, so $-\frac{b}{a}-\left(r_{1}+r_{2}\right)=\left(r_{3}+r_{4}\right)$ must be rational too.

To save space, let $R=\left(r_{1}+r_{2}\right)$, so R is a rational number. By plugging in R into $f(z)$, you get $f(R)$, which must be rational too, as a rational number raised to an integer power is still rational, and the sum of rational numbers is rational.

$$
\begin{gathered}
f(R)=a\left(R-r_{1}\right)\left(R-r_{2}\right)\left(R-r_{3}\right)\left(R-r_{4}\right)=a r_{1} r_{2}\left(R^{2}-R\left(r_{3}+r_{4}\right)+r_{3} r_{4}\right) \\
\qquad f(R)=a r_{1} r_{2}\left(R^{2}-R\left(r_{3}+r_{4}\right)\right)+a r_{1} r_{2} r_{3} r_{4} \\
\frac{f(R)-a r_{1} r_{2} r_{3} r_{4}}{a\left(R^{2}-R\left(r_{3}+r_{4}\right)\right)}=r_{1} r_{2}
\end{gathered}
$$

Recall $a r_{1} r_{2} r_{3} r_{4}=e$.
$f(R), a, R,\left(r_{3}+r_{4}\right), e$ are all rational and adding or multiplying rational numbers still preserves their rationality, so $r_{1} r_{2}$ is rational too.

Note that for this equation to provide useful information about $r_{1} r_{2}$, we must avoid indeterminate forms (when the denominator is zero). $a\left(R^{2}-R\left(r_{3}+r_{4}\right)\right) \neq 0$, so $R^{2} \neq R\left(r_{3}+r_{4}\right)$, and $\left(r_{1}+r_{2}\right) \neq\left(r_{3}+r_{4}\right)$, which is good because that's what the problem says, so we can exclude that case from our solution. However, this equation also does not provide information for when $\left(r_{1}+r_{2}\right)=0$, so we must test that case separately.

If we multiply out $a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ again and focus on the z term, we see that $d=-a\left(r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+r_{1} r_{3} r_{4}+r_{2} r_{3} r_{4}\right)=-a r_{1} r_{2} r_{3} r_{4}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)-a r_{1} r_{2}\left(r_{3}+r_{4}\right)$. If $\left(r_{1}+r_{2}\right)=0$ and $r_{1}, r_{2} \neq 0$, then $\frac{1}{r_{1}}+\frac{1}{r_{2}}=0$ too. (If $r_{1}, r_{2}=0$ then $r_{1} r_{2}=0$, which is rational).
Our equation simplifies to $d=-a r_{1} r_{2}\left(r_{3}+r_{4}\right)$. We have seen that $d, a,\left(r_{3}+r_{4}\right)$ are rational so if $\left(r_{1}+r_{2}\right) \neq\left(r_{3}+r_{4}\right), r_{1} r_{2}$ is still rational even if $\left(r_{1}+r_{2}\right)=0$.

Putting it together, we can see that if $r_{1}+r_{2}$ is rational, even if it equals zero, and if $\left(r_{1}+r_{2}\right) \neq\left(r_{3}+r_{4}\right)$, then $r_{1} r_{2}$ is rational.

