1) Pf: Let prime p be of n bits, then $2^{n-1}<p<2^{n}$.
$2 k C k=\left[\left(2^{n}\right)!\right] /\left[\left(2^{n-1}\right)!\left(2^{n-1}\right)!\right]=\left[\left(2^{n-1}+1\right)\left(2^{n-1}+2\right) \ldots\left(2^{n}\right)\right] /\left(2^{n-1}\right)!$
Notice that p is contained in the numerator but not in the denominator since p is a prime larger than 2^{n-1} and less than 2^{n}. Therefore, $p \mid 2 k C k$. QED
2) show that every rational number.... Quotient of prime!...

Pf: We first prove that all primes p_{n} can be written as products/ quotients of some factorials of primes. (*)
Base case: $\mathrm{p} 1=2=2!/ 1$! So * holds for $\mathrm{n}=1$
$n=k$. Assume * holds for all prime numbers up to p_{k}.
$n=k+1$. Observe $p_{k+1}=\left(p_{k+1}\right)!/\left(p_{k+1}-1\right)!$. p_{k+1} is less than p_{k+1}, so it can be written as the product of primes smaller than p_{k+1}-- or smaller than or equal to p_{k}. (if a prime factor of $p_{k+1}-1$ is larger than or equal to p_{k+1} then $p_{k+1}-1$ is larger than or equal to p_{k+1}, a contradiction.)
Since by induction hypothesis, all primes from p_{1} to p_{k} can be written as products/quotients of prime factorials, the product of these primes (for example, $p_{k+1}-1$) also can be written as products/ quotients of prime factors. Thus, $\mathrm{p}_{\mathrm{k}+1}$ can be written as a product/quotient of prime factorials. * holds for $\mathrm{n}=\mathrm{k}+1$.
Therefore, * holds for all prime numbers.
All rational numbers can be written as the quotient of two integers, and all integers can be factored into prime numbers. All rational numbers are therefore the products/ quotients of prime numbers, and since * is true for all prime, all rational numbers can be written as products/ quotients of prime factorials. QED

7) Let $f(z)=a z 4+b z_{3}+c z 2+d z+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where

 $a, b, c, d, e a r e$ integers and $a 6=0$. Show that if $r_{1}+r_{2}$ is a rational number and if $r_{1}+r_{2}$ is not $r_{3}+r_{4}$ then $r_{1} r_{2}$ is a rational number too.
Pf

Divide both sides of the equation by a, we get
$z^{4}+\alpha z^{3}+\beta z^{2}+\gamma z+\varepsilon=(z-r 1)(z-r 2)(z-r 3)(z-r 4)$
Since $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ are integers, $\alpha, \beta, \gamma, \varepsilon$ are rational numbers, where
$\varepsilon=r 1 * r 2 * r 3 * r 4$
$\gamma=-(r 1 * r 2 * r 3+r 1 * r 2 * r 4+r 1 * r 3 * r 4+r 2 * r 3 * r 4)=(r 1 r 2)(r 3+r 4)+(r 3 r 4)(r 1+r 2)$
$\beta=r 1 r 2+r 1 r 3+\ldots r 3 r 4=r 1 r 2+r 3 r 4+(r 1+r 2)(r 3+r 4)$
$\alpha=-(r 1+r 2+r 3+r 4)$
From (4), since α and $r 1+r 2$ are both rational, $r 3+r 4$ is also rational. So ($r 1+r 2$)(r3+r4) is also rational. From (4), β is rational, so $\mathrm{r} 1 \mathrm{r} 2+\mathrm{r} 3 \mathrm{r} 4$ is rational, call it q 1 . Multiplying both sides by ($\mathrm{r} 1+\mathrm{r} 2$), we get
$q 1(r 1+r 2)=r 1 r 2(r 1+r 2)+r 3 r 4(r 1+r 2)$
(2)-(5) and rearrange, we get $[\gamma-q 1(r 1+r 2)] /(r 1+r 2-r 3-r 4)=r 1 r 2$ $\gamma, q 1, r 1+r 2$, and (r1+r2-r3-r4) are all rational and $r 1+r 2-(r 3+r 4)$ is not 0 bc $r 1+r 2$ does not equal $r 3+r 4, r 1 r 2$ is rational too. QED

6)

Pf by induction:

Induction step: let the claim work for $\mathrm{m}=\mathrm{a}$ and $\mathrm{n}=\mathrm{b}$. That is,

$$
\frac{(a+b)!}{(a+b)^{a+b}}<\frac{a!}{a^{a}} \frac{b!}{b^{b}}
$$

Now we add one to either m or n . WLOG, consider the case when $\mathrm{m}=\mathrm{a}+1$, $\mathrm{n}=\mathrm{b}$.

$$
\frac{(a+b+1)!}{(a+b+1)^{a+b+1}}<\frac{(a+b+1)(a+b)!}{(a+b+1)(a+b)^{a+b}}<\frac{(a+b)!}{(a+b)^{a+b}}<\frac{a!}{a^{a}} \frac{b!}{b^{b}} \text { ????? }
$$

