Q.6) Show that every positive integer n is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another
Solution: We will proceed by strong induction on n.

Base Case(s):

- $n=1$. We can write $1=2^{0} 3^{0}$
- $n=2$. This is already in the desired format.

Inductive Hypothesis: Assume that we can write every positive integer less than n in the desired fashion. We wish to show we can also write n in this manner. We will consider two cases.

Case 1: If n is even. We write $n=2 k$ for some positive integer k. Note that by our inductive hypothesis, we can write

$$
k=\sum_{i=1} 2^{\alpha_{i}} 3^{\beta_{i}}
$$

where $2^{\alpha_{i}} 3^{\beta_{i}} \nmid 2^{\alpha_{j}} 3^{\beta_{j}}$ for all $i \neq j$. Note that if a pair of terms in this expansion for k is indivisible, then multiplying each by 2 will not effect their divisibility. Therefore we have

$$
n=2 k=\sum_{i=1} 2^{\alpha_{i}+1} 3^{\beta_{i}}
$$

where no summand divides another.
Case 2: Now suppose n is odd. If $n=3^{k}$ for some positive integer k then we are done. Otherwise, Let 3^{k} be the largest power of 3 less than n. Consider $m=n-3^{k}$. It must be the case that m is even and by our inductive hypothesis it must be the case

$$
m=\sum_{i=1} 2^{\alpha_{i}} 3^{\beta_{i}}
$$

where $2^{\alpha_{i}} 3^{\beta_{i}}+2^{\alpha_{j}} 3^{\beta_{j}}$ for all $i \neq j$. Note that since m is even, there cannot be a term of the form $2^{0} 3^{\beta}$ in the summand for m, since all terms of the form $2^{r} 3^{s}$ are even for $r \geq 1$. This implies that 3^{k} will not be divisible by any of the terms in the summand for m. Could there be a term in the summand that is divisible by 3^{k} ? Since $3^{k}<n<3^{k+1}$, the only possible divisible term would be $2^{1} 3^{k}$. However if this term was present in the summand for m, then

$$
\begin{aligned}
n & =3^{k}+m \\
& \geq 3^{k}+2^{1} 3^{k} \\
& =3^{k+1}
\end{aligned}
$$

This contradicts our earlier assumption that $n<3^{k+1}$. Therefore we can write

$$
\begin{aligned}
n & =3^{k}+m \\
& =3^{k}+\sum_{i=1} 2^{\alpha_{i}} 3^{\beta_{i}}
\end{aligned}
$$

Where no two terms in the summand divide one another, as desired.

