Q.6) Show that every positive integer *n* is a sum of one or more numbers of the form $2^r 3^s$, where *r* and *s* are nonnegative integers and no summand divides another

Solution: We will proceed by strong induction on *n*.

Base Case(s):

- n = 1. We can write $1 = 2^0 3^0$
- n = 2. This is already in the desired format.

Inductive Hypothesis: Assume that we can write every positive integer less than *n* in the desired fashion. We wish to show we can also write *n* in this manner. We will consider two cases.

Case 1: If *n* is even. We write n = 2k for some positive integer *k*. Note that by our inductive hypothesis, we can write

$$k = \sum_{i=1}^{\alpha_i} 2^{\alpha_i} 3^{\beta_i}$$

where $2^{\alpha_i}3^{\beta_i} \nmid 2^{\alpha_j}3^{\beta_j}$ for all $i \neq j$. Note that if a pair of terms in this expansion for *k* is indivisible, then multiplying each by 2 will not effect their divisibility. Therefore we have

$$n = 2k = \sum_{i=1}^{\infty} 2^{\alpha_i + 1} 3^{\beta_i}$$

where no summand divides another.

Case 2: Now suppose *n* is odd. If $n = 3^k$ for some positive integer *k* then we are done. Otherwise, Let 3^k be the largest power of 3 less than *n*. Consider $m = n - 3^k$. It must be the case that *m* is even and by our inductive hypothesis it must be the case

$$m=\sum_{i=1}^{\alpha_i} 2^{\alpha_i} 3^{\beta_i}$$

where $2^{\alpha_i}3^{\beta_i} \nmid 2^{\alpha_j}3^{\beta_j}$ for all $i \neq j$. Note that since *m* is even, there cannot be a term of the form 2^03^{β} in the summand for *m*, since all terms of the form 2^r3^s are even for $r \geq 1$. This implies that 3^k will not be divisible by any of the terms in the summand for *m*. Could there be a term in the summand that is divisible by 3^k ? Since $3^k < n < 3^{k+1}$, the only possible divisible term would be 2^13^k . However if this term was present in the summand for *m*, then

$$n = 3^k + m$$

$$\geq 3^k + 2^1 3^k$$

$$= 3^{k+1}.$$

This contradicts our earlier assumption that $n < 3^{k+1}$. Therefore we can write

$$n = 3^k + m$$

= $3^k + \sum_{i=1}^{k} 2^{\alpha_i} 3^{\beta_i}$

Where no two terms in the summand divide one another, as desired.