Q.6) Let m, n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \cdot \frac{n!}{n^{n}} .
$$

Solution:

Let's start by isolating the terms with factorials and the terms with exponents to see if we can make sense of this inequality. We want to show

$$
\begin{equation*}
\frac{(m+n)!}{m!\cdot n!}<\frac{(m+n)^{m+n}}{n^{n} \cdot m^{m}} \tag{1}
\end{equation*}
$$

We notice that $\frac{(m+n)!}{m!\cdot n!}=\binom{m+n}{n}$. Substituting this into (1) we get the new expression we wish to prove

$$
\binom{m+n}{n}<\frac{(m+n)^{m+n}}{n^{n} \cdot m^{m}}
$$

or equivalently

$$
\begin{equation*}
\binom{m+n}{n} n^{n} \cdot m^{m}<(m+n)^{m+n} \tag{2}
\end{equation*}
$$

Now recall the general form of the binomial expansion for integers a, b, r

$$
(a+b)^{r}=\sum_{k=0}^{n}\binom{r}{k} a^{k} b^{r-k}
$$

For $a, b>0$, each term in the expansion is positive and thus for $r>1$ it follows $\binom{r}{k} a^{k} b^{r-k}<(a+b)^{r}$ for all values of $k=0,1, \ldots, r$. The expression we wish to prove (2) follows from plugging in the values $a=n, b=m, k=n$ and $r=m+n>1$ for positive integers n and m.

