1. An n-bit prime is a prime number which uses n bits when written in binary. Show that every n-bit prime number divides the central binomial coefficient $C_{k}=\binom{2 k}{k}$ where $k=2^{n-1}$. (For example, 5 is a 3-bit prime so it should divide $C_{4}=\binom{8}{4}$; indeed $C_{4}=70$ is a multiple of 5 , as well as the other 3 -bit prime, which is 7 .)

For extra credit devise a quick method to compute these central binomial coefficients. (It would then be possible to find all the prime divisors of a number N by computing the gcd of N and $C_{2^{n}}$ for $\left.n=1,2, \ldots\right)$.
2. Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another. (For example, $23=9+8+6$.)
3. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$
\frac{10}{9}=\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!}
$$

4. Let h and k be positive integers. Prove that for every $\epsilon>0$, there are positive integers m and n such that

$$
\epsilon<|h \sqrt{m}-k \sqrt{n}|<2 \epsilon
$$

5. Let p be a prime number. Let $h(x)$ be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h\left(p^{2}-1\right)$ are distinct modulo p^{2}. Show that $h(0), h(1), \ldots, h\left(p^{3}-1\right)$ are distinct modulo p^{3}.
6. Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \cdot \frac{n!}{n^{n}}
$$

7. Let $f(z)=a z^{4}+b z^{3}+c z^{2}+d z+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where a, b, c, d, e are integers and $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and if $r_{1}+r_{2} \neq r_{3}+r_{4}$ then $r_{1} r_{2}$ is a rational number too.
8. Prove that there are unique positive integers a, n such that

$$
a^{n+1}-(a+1)^{n}=2001
$$

