Q.1) Show that if p is prime then for all positive integers a and b,

$$
\binom{p a}{p b} \equiv\binom{a}{b} \quad(\bmod p)
$$

Solution:

Consider the left hand side, on its face. It looks like the number of ways to pick a committee of size $p b$ from a pool of $p a$ people. However, we will count this is a different way. First, we split the pa people into equal groups of size a and assign each a different color shirt $C_{1}, C_{2}, \ldots, C_{p}$. Our problem has been reduced to counting the number of ways to pick a grouping of size $p b$ from the union of all of these different color groups. We can then come up with two distinct and exhaustive methods to pick a committee. In one method, we pick exactly b people from each group to form a committee, and the other where we do not. We shall call the committees of the former structure Type 1 and latter Type 2.

If we want to count the number of Type 1 committees, we need to pick exactly b members from each color group. There are $\binom{a}{b}$ ways to get members from $C_{1},\binom{a}{b}$ ways to get members from C_{2}, and so on. Therefore there are $\binom{a}{b}^{p}$ ways to pick a group of size $p b$ by picking exactly b members from each color group. Since p is a prime, Fermat's little theorem tells us

$$
\binom{a}{b}^{p} \equiv\binom{a}{b} \quad(\bmod p)
$$

Now, if we can show the number of Type 2 committees is a multiple of p then we will have achieved our result.

Note that if not all color groups contribute an equal number of members to the committee, then we can place a non-trivial ordering on the number of committee members selected from each group. Let $A_{1}, A_{2}, \ldots, A_{p}$ be the number of members selected from each color group in a particular selection. WLOG suppose that $A_{1} \geq A_{2} \geq \ldots \geq A_{p}$ and not all are equal. Suppose there are K total different committees that can be formed that satisfy this inequality with not all equal A_{i}. By symmetry, there are p ! distinct orderings of $A_{1}, A_{2}, \ldots, A_{p}$, each with K corresponding possible committees, therefore the number of possible committees of the second type is $p!\cdot K$ which is a multiple of p.

In summary, we have shown that the left hand side can be interpreted as picking a committee of size $p b$ from p groups of size a, each group with a distinct color shirt. We partitioned the number of possible committees into two types: one where each color shirt group has an equal number of members and ones that do not. The former is congruent to $\binom{a}{b} \bmod p$ and the latter is a multiple of p. The desired equivalence follows.

