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Q.4) For positive integers m and n, let f (m, n) denote the number of n-tuples
(x1, x2, . . . , xn) of integers such that |x1| + |x2| + . . . + |xn| ≤ m. Show that f (m, n) =
f (n, m).

Solution:

We will first develop an expression for the number of n-tuples (x1, x2, . . . , xn) of inte-
gers such that

|x1|+ |x2|+ . . . + |xn| = r

where r is a positive integer of value at most m, then we will sum over these expressions
to obtain an expression for f (m, n). The same logic also provides a similar formula for
f (n, m). We will then manipulate each of these expressions so that they are in a manage-
able form and then prove equality using a combinatorial argument.

Let r be a positive integer of value at most m. Let gn(r) be the number of n-tuples
(x1, x2, . . . , xn) of integers such that |x1| + |x2| + . . . + |xn| = r. The main difficulty in
determining a formula for gn(r) is that some of the xi may be zero. To find some order
in this, consider counting the number of n tuples in which exactly k entries are zero and
whose absolute value sum is r.

There are (n
k) ways to choose which entries are set to zero. Now we need to distribute

a total sum of r over the remaining n − k absolute valued entries. This can be done by
first distributing one unit to each of the n − k entries, then distributing the remaining

r − (n − k) units with no restrictions which can be done in
((

n−k
r−(n−k)

))
=

(
r− 1

r− n− k

)
ways. Lastly, we need to account for the signs of each non-zero entry, they can be negative
or positive and it doesn’t alter the sum, therefore there are 2n−k ways to pick the signs.
Putting it all together, there are (

n
k

)(
r− 1

r− n− k

)
2n−k (1)

n-tuples of integers that have absolute value sum r with exactly k zero entries, summing
over all values of k, we have the total number of n-tuples that have absolute value sum
equal to r is

gn(r) =
n

∑
k=0

(
n
k

)(
r− 1

r− n− k

)
2n−k. (2)

Now, to obtain an expression for f (m, n), we sum over the possible values of r = 1, 2, . . . , m
to obtain

f (m, n) =
m

∑
r=1

n

∑
k=0

(
n
k

)(
r− 1

r− n− k

)
2n−k. (3)
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Since we are summing over a finite number of terms, we can swap the order of summa-
tion. Then, we can factor out some terms and utilize the “hockey stick identity” from
Pascal’s triangle 1 on the inner sum.

f (m, n) =
m

∑
r=1

n

∑
k=0

(
n
k

)(
r− 1

r− n− k

)
2n−k

=
n

∑
k=0

m

∑
r=1

(
n
k

)(
r− 1

r− n− k

)
2n−k

=
n

∑
k=0

(
n
k

)
2n−k

m

∑
r=1

(
r− 1

r− n− k

)
=

n

∑
k=0

(
n
k

)
2n−k

(
m

m− n + k

)
Now, taking advantage of the symmetry of the binomial coefficient, we can write ( m

m−n+k)
as ( m

n−k) and we are left with the overall expression

f (m, n) =
n

∑
k=0

(
n
k

)(
m

n− k

)
2n−k. (4)

The same argument presented tells us

f (n, m) =
m

∑
k=0

(
m
k

)(
n

m− k

)
2m−k (5)

and it remains to show these two sums are equal. We will do so with a combinatorial
proof. Consider a set of n + m people n of which are wearing blue shirts and m of which
are wearing red shirts. The sum in (4) is the number of ways to pick a committee of size
n and then any sized subcommittee from the people wearing red shirts in the committee.

The sum in (5) picks a subset of size m that will not be on the committee (and in doing
so determines the n people that will be on the committee) and then chooses any sized sub-
committee of the remaining people wearing red shirts to be on the subcommittee. Since
theses two sums are counting the same thing, they are equal.

Therefore f (n, m) = f (m, n) as desired.

1See https://en.wikipedia.org/wiki/Hockey-stick_identity
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