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Q.6) Define a selfish set to be a set which has its own cardinality (number of elements) as
an element. Find, with a proof, the number of subsets of {1, 2, . . . , n}which are minimal
selfish sets, that is, selfish sets none of whose proper subsets is selfish.

Solution:
let’s first introduce some notation. Let Ak where 1 ≤ k ≤ n, be the set of all minimal
selfish sets of size k with elements from N = {1, 2, . . . , n} and let Mn be the total number
of minimal selfish sets formed from subsets of N.

With this notation established, notice that by definition of a selfish set, if S ∈ Ak then
k ∈ S. Moreover, we claim that if α ∈ S and α 6= k then α > k. To see why, if α < k, and
|S| = k, when we can find a subset of size α in S that includes α, violating our assumption
that S was a minimal selfish set.

Therefore, every S ∈ Ak has the form S = {k, α1, . . . , αk−1} where αi > k for all i =
1, . . . , k− 1. Are there any more restrictions on the αi? No. To see why this is true notice
that we cannot form a selfish subset of cardinality higher than k regardless of the values
of αi’s since any subset of S has cardinality at most k. It remains to count the number of
minimal selfish subsets of size k. Note that we have k − 1 spots/α’s to fill and we have
n− k remaining values to choose from, therefore

|Ak| =
(

n− k
k− 1

)
. (1)

Summing over k ∈ N we have an expression for the total number of minimal selfish sets
Mn.1

Mn =
n

∑
k=1

(
n− k
k− 1

)
(2)

Re-indexing, and using footnote 1 we can write (2) as

Mn =
∞

∑
k=0

(
n− 1− k

k

)
(3)

Experimenting with some values, we notice the pattern that Mn seems to align with Fn,
the n-th Fibonacci number starting with F1 = 1, F2 = 1. To finish, we will establish a fact
about the Fibonacci numbers and then use it prove Fn = ∑k=0 (

n−1−k
k ) by a combinatorial

proof.

1We could technically sum to infinity since (n
k) = 0 for all k > n
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Lemma 1. I claim the Fn is the number of ways to tile an (n − 1) × 1 rectangular board with
(2× 1) rectangular and (1× 1) square pieces.

Proof. We proceed by strong induction. For n = 1, we note there is only one way to tile
a 0× 1 board which is F1. For n = 2 there again is only one way to time the unit board
which agrees with F2.

Now we make the inductive hypothesis that this holds for all natural numbers n ≤
k. Consider an rectangular board of size k × 1. We can either place a rectangular or
square piece at the leftmost position, each producing a remaining board size of k − 1
and k− 2 respectively, but by our inductive hypothesis, these can be tiled in Fk and Fk−1
ways receptively. Since our first tile placements were mutually exclusive moves, there are
Fk + Fk−1 = Fk+1 ways to tile the size k board, as desired.

With this lemma established, we now want to show that there is another way to count
the tilings of a size (n− 1)× 1 board. That is, we wish to show

Mn =
∞

∑
k=0

(
n− 1− k

k

)
is also the number of ways to tile a board of size (n − 1)× 1. One way to see why this
true is to notice each nonzero term, (n−1−k

k ), in the sum, is the number of ways to tile
an n− 1 length board using exactly k of the (2× 1) sized rectangular pieces, and the rest
(1× 1) squares. To see this, note that any particular arrangement of k of the (2× 1) pieces
on a (n− 1)× 1 board can be encoded in k positions on a (n− 1− k)× 1 board. Simply
collapse each (2× 1) piece used into a (1× 1) piece. Similarly we can expand any such
choice of k postions on a (n− 1− k)× 1 board to a unique placement of (2× 1) pieces on
an (n− 1)× 1 board. If we now sum over the number of (2× 1) pieces to be used in the
tilings, we acheive

Fn =
∞

∑
k=0

(
n− 1− k

k

)
and finally we have proven

Mn = Fn

where F1, F2 = 1
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