Q.6) Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with a proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

Solution:

let's first introduce some notation. Let A_{k} where $1 \leq k \leq n$, be the set of all minimal selfish sets of size k with elements from $N=\{1,2, \ldots, n\}$ and let M_{n} be the total number of minimal selfish sets formed from subsets of N.

With this notation established, notice that by definition of a selfish set, if $S \in A_{k}$ then $k \in S$. Moreover, we claim that if $\alpha \in S$ and $\alpha \neq k$ then $\alpha>k$. To see why, if $\alpha<k$, and $|S|=k$, when we can find a subset of size α in S that includes α, violating our assumption that S was a minimal selfish set.

Therefore, every $S \in A_{k}$ has the form $S=\left\{k, \alpha_{1}, \ldots, \alpha_{k-1}\right\}$ where $\alpha_{i}>k$ for all $i=$ $1, \ldots, k-1$. Are there any more restrictions on the α_{i} ? No. To see why this is true notice that we cannot form a selfish subset of cardinality higher than k regardless of the values of $\alpha_{i}{ }^{\prime}$ s since any subset of S has cardinality at most k. It remains to count the number of minimal selfish subsets of size k. Note that we have $k-1$ spots $/ \alpha$'s to fill and we have $n-k$ remaining values to choose from, therefore

$$
\begin{equation*}
\left|A_{k}\right|=\binom{n-k}{k-1} \tag{1}
\end{equation*}
$$

Summing over $k \in N$ we have an expression for the total number of minimal selfish sets $M_{n} .{ }^{1}$

$$
\begin{equation*}
M_{n}=\sum_{k=1}^{n}\binom{n-k}{k-1} \tag{2}
\end{equation*}
$$

Re-indexing, and using footnote 1 we can write (2) as

$$
\begin{equation*}
M_{n}=\sum_{k=0}^{\infty}\binom{n-1-k}{k} \tag{3}
\end{equation*}
$$

Experimenting with some values, we notice the pattern that M_{n} seems to align with F_{n}, the n-th Fibonacci number starting with $F_{1}=1, F_{2}=1$. To finish, we will establish a fact about the Fibonacci numbers and then use it prove $F_{n}=\sum_{k=0}\binom{n-1-k}{k}$ by a combinatorial proof.

[^0]Lemma 1. I claim the F_{n} is the number of ways to tile an $(n-1) \times 1$ rectangular board with (2×1) rectangular and (1×1) square pieces.

Proof. We proceed by strong induction. For $n=1$, we note there is only one way to tile a 0×1 board which is F_{1}. For $n=2$ there again is only one way to time the unit board which agrees with F_{2}.

Now we make the inductive hypothesis that this holds for all natural numbers $n \leq$ k. Consider an rectangular board of size $k \times 1$. We can either place a rectangular or square piece at the leftmost position, each producing a remaining board size of $k-1$ and $k-2$ respectively, but by our inductive hypothesis, these can be tiled in F_{k} and F_{k-1} ways receptively. Since our first tile placements were mutually exclusive moves, there are $F_{k}+F_{k-1}=F_{k+1}$ ways to tile the size k board, as desired.

With this lemma established, we now want to show that there is another way to count the tilings of a size $(n-1) \times 1$ board. That is, we wish to show

$$
M_{n}=\sum_{k=0}^{\infty}\binom{n-1-k}{k}
$$

is also the number of ways to tile a board of size $(n-1) \times 1$. One way to see why this true is to notice each nonzero term, $\binom{n-1-k}{k}$, in the sum, is the number of ways to tile an $n-1$ length board using exactly k of the (2×1) sized rectangular pieces, and the rest (1×1) squares. To see this, note that any particular arrangement of k of the (2×1) pieces on a $(n-1) \times 1$ board can be encoded in k positions on a $(n-1-k) \times 1$ board. Simply collapse each (2×1) piece used into a (1×1) piece. Similarly we can expand any such choice of k postions on a $(n-1-k) \times 1$ board to a unique placement of (2×1) pieces on an $(n-1) \times 1$ board. If we now sum over the number of (2×1) pieces to be used in the tilings, we acheive

$$
F_{n}=\sum_{k=0}^{\infty}\binom{n-1-k}{k}
$$

and finally we have proven

$$
M_{n}=F_{n}
$$

where $F_{1}, F_{2}=1$

[^0]: ${ }^{1}$ We could technically sum to infinity since $\binom{n}{k}=0$ for all $k>n$

