Q.8) Find a combinatorial explanation for the algebraic identity

$$
\binom{\binom{n}{2}}{2}=3\binom{n+1}{4}
$$

Solution:

Let us first decipher the left-hand side. $\binom{n}{2}$ is the number of two element subsets from a set of size n. Therefore $\left(\begin{array}{c}\binom{n}{2}\end{array}\right)$ is the number of ways two pick two, distinct two element subsets from a set of size n. Now we have two cases to consider, the two subsets we chose are disjoint, in which case their union is of the form $\{A, B\} \cup\{B, C\}=$ $\{A, B, C, D\}$, or they share a single common element, in which case their union is of the form $\{A, B\} \cup\{A, C\}=\{A, B, C\}$, lets call the former subsets of the 'first' type and the latter subsets of the 'second' type.

Given a particular subset of the 'first' type, $S_{1}=\{A, B, C, D\}$ there are three choices of two element subsets whose union give us S_{1}, namely,

$$
\begin{aligned}
& \{A, B\} \cup\{C, D\}=\{A, B, C, D\} \\
& \{A, C\} \cup\{B, D\}=\{A, B, C, D\} \\
& \{A, D\} \cup\{B, C\}=\{A, B, C, D\}
\end{aligned}
$$

Similarly, given a particular subset of the 'second' type, $S_{2}=\{A, B, C\}$ there are three choices of two element subsets whose union give us S_{2}, which are,

$$
\begin{aligned}
& \{A, B\} \cup\{B, C\}=\{A, B, C\} \\
& \{A, C\} \cup\{B, C\}=\{A, B, C\} \\
& \{A, B\} \cup\{A, C\}=\{A, B, C\}
\end{aligned}
$$

Anthropomorphizing, if we have a set of n people, then $\binom{\binom{n}{2}}{2}$ is three times the number of ways to pick a subset of 3 or 4 of them.

Inspired by this observation, let us now determine the number of ways to pick a subset of 3 or 4 people from a pool of n people. A neat way to think about this is to add a fictitious 'invisible' person to the pool of n people. Now when we pick a group of size 3 , we really chose a group of size 4 with the invisible person chosen. With this modification, it follows that the number of ways to pick a group of size 3 or 4 is the same as the number of ways to choose a group of size 4 including a possibly invisible person which is $\binom{n+1}{4}$. Multiplying by a factor of three to get, $3\binom{n+1}{4}$ both sides of our original equation now represent three times the number of ways to pick a group of size 3 or 4 from a set of n people.

