## Putnam Exam: meet Linear Algebra!

1. Do there exist square matrices $A$ and $B$ with $A B-B A=I$ ?
2. Let $A$ and $B$ be $n \times n$ matrices satisfying $A+B=A B$. Show that $A B=B A$,
3. Suppose $A, B, C, D$ are $n \times n$ matrices, satisfying the conditions that $A B^{t}$ and $C D^{t}$ are symmetric and $A D^{t}-B C^{t}=I$. Prove that $A^{t} D-C^{t} B=I$.
4. Suppose $A$ is an $n \times n$ matrix for which

$$
\left|A_{i i}\right|>\sum_{j \neq i}\left|A_{i j}\right|
$$

for all $i=1,2, \ldots n$. Prove that $A$ is invertible.
5. An $n \times n$ matrix $M$ has the feature that $M_{i j}=M_{k l}$ whenever $i-j \equiv k-l$ $(\bmod n)$. Compute the eigenvalues of $M$ (in terms of the entries in the first row of $M$ : $M_{11}, M_{12}, \ldots, M_{1 n}$.)
6. Let $H$ be an $n \times n$ matrix all of whose entries are $\pm 1$ and whose rows are mutually orthogonal. Suppose $H$ has an $a \times b$ submatrix whose entries are all +1 . Show that $a b \leq n$.
7. Let $M_{3}(\mathbf{C})$ denote the collection of $3 \times 3$ matrices whose entries are complex numbers. Suppose $A, B \in M_{3}(\mathbf{C})$ with $B \neq 0$ and $A B=0$. Prove that there exists a nonzero $D \in M_{3}(\mathbf{C})$ such that

$$
A D=D A=0
$$

(Here 0 means the $3 \times 3$ matrix filled with zeros.)
8. Let $S$ be a set of $2 \times 2$ matrices with complex entries, and let $T$ be the subset of $S$ consisting of those matrices in $S$ whose eigenvalues are $\pm 1$ (i.e. the eigenvalues of each such matrix are either $\{1,1\},\{-1,-1\}$, or $\{1,-1\})$. Suppose there are exactly three matrices in $T$. Prove that there are matrices $A$ and $B$ (possibly equal) in $S$ such that $A B$ is not in $S$.
9. Let $Z$ be the set of points in $\mathbf{R}^{n}$ whose coordinates are all 0's and 1's. (That is, $Z$ is the set of vertices of the unit hypercube in $\mathbf{R}^{n}$. For a fixed integer $k=1,2, \ldots, n$, what is the largest number $N(k)$ of elements of $Z$ which can be found in a subspace of $\mathbf{R}^{n}$ of dimension $k$ ?
10. Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?

