Putnam-group challenging Geometry problems

1. A rectangle $H O M F$ has sides $H O=11$ and $O M=5$. A triangle $A B C$ has H as the intersection of its altitudes, O as the center of its circumscribed circle, M as the midpoints of $B C$, and F as the foot of the altitude from A. What is the length of $B C$?
2. Let $d_{1}, d_{2}, \ldots, d_{12}$ be real numbers in the open interval $(1,12)$. Show that there exist distinct indices i, j, k such that d_{i}, d_{j}, d_{k} are the side lengths of an acute triangle.
3. What is the maximum number of rational points that can be on a circle in \mathbf{R}^{2} whose center is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.)
4. Show that for any set of five points on a sphere there is a set of four of them that lie on a closed hemisphere.
5. Can an arc of a parabola inside a circle of radius 1 have length greater than 4 ?
6. A unit cube is positioned in R^{3} in some orientation and projected projected onto the coordinate plane $\left\{x_{1}=0\right\}$. What is the largest possible area of this projection?

In the following two questions, θ_{n} is the measure of an angle which is one nth of a complete circle. Since it is famously true that θ_{34} can be constructed with straightedge and compass, but θ_{36} cannot be, we will feature these angles in the remaining questions. In both cases we present a construction and ask you to compute the measure of angle $P C B$.
7. A point P lies inside the triangle $A B C$. The measures of the angles $P A C, P A B, P B A$, and $P B C$ are respectively $3 \theta_{36}, \theta_{36}, 2 \theta_{36}$, and $2 \theta_{36}$. Compute the measure of angle $P C B$.
8. A point P lies off the line segment $A B C$. The measures of the angles $P A B$ and $A P B$ are respectively $5 \theta_{34}$ and $9 \theta_{34}$, and segment $A B$ is twice as long as segment $B C$. Compute the measure of angle $P C B$.

Hint: One of these last two prolems is almost, but not quite, doable and the other is almost, but not quite, un-doable!

