Here are some Putnam- or Putnam-like questions that can at least be stated to a freshman Calculus student. (I would not expect a typical freshman to have much idea of how to solve them, though!)

1. Find the value of b for which

$$
\lim _{x \rightarrow 0}\left(\frac{1 /(3 x+b)-2}{x}\right)
$$

exists; then, find the value of this limit.
2. Evaluate this integral:

$$
\int_{x=0}^{x=1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x
$$

3. Show that this improper integral converges:

$$
\int_{0}^{\infty} \sin (x) \sin \left(x^{2}\right) d x
$$

4. Evaluate

$$
\sum_{n=2}^{\infty} \log \left(\frac{n^{3}-1}{n^{3}+1}\right)
$$

5. Evaluate

$$
\int_{0}^{\infty} \frac{\arctan (\pi x)-\arctan (x)}{x} d x
$$

6. Suppose that f is differentiable and that $f^{\prime}(x)$ is strictly increasing on $[0, \infty)$. Suppose further that $f(0)=0$. Prove that $g(x)=f(x) / x$ is strictly increasing on $(0, \infty)$
7. Let f be a three times differentiable function (defined on \mathbf{R} and real-valued) such that f has at least five distinct real zeros. Prove that $f+6 f^{\prime}+12 f^{\prime \prime}+8 f^{\prime \prime \prime}$ has at least two distinct real zeros.
(This is an actual Putnam question from last year!)
8. Find the minimum value of

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

among positive numbers x, y, z subject to $x+y+z=1$.
9. Prove that $n!<\left(\frac{n+1}{2}\right)^{n}$ for $n=2,3,4, \ldots$
10. Show that

$$
\left(a^{2} b+b^{2} c+c^{2} a\right)\left(a b^{2}+b c^{2}+c a^{2}\right) \geq 9 a^{2} b^{2} c^{2}
$$

for all positive real numbers a, b, c

