UT Putnam Prep Problems, Oct 282021

I thought we might try some questions about Combinatorics (a.k.a. Advanced Counting).

1. Determine (with proof) the number of ordered triples $\left(A_{1}, A_{2}, A_{3}\right)$ of sets which satisfy
(i) $A_{1} \cup A_{2} \cup A_{3}=\{1,2,3,4,5,6,7,8,9,10\}$ and
(ii) $A_{1} \cap A_{2} \cap A_{3}=\emptyset$
where \emptyset denotes the empty set. Express that answer in the form $2^{a} 3^{b} 5^{c} 7^{d}$ where a, b, c, and d are nonnegative integers.
2. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39 . Show that there are two faces that share a vertex and have the same integer written on them.
3. Given any five points in the interior of a square of side 1 , show that there must be two of them closer together than a distance of $k=1 / \sqrt{2}$. Is the result true for a smaller number k ?
4. Call a set selfish if it has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.
5. Suppose S is a set of triangles, no two of which are congruent to each other. If every triangle in S has sides of integer length, how many triangles in S can have a perimeter of 15 ?
6. For each positive integer k let $f(k)=k!/ k^{k}$. Show that for all positive integers m, n we have $f(m+n)<f(m) f(n)$.
7. Two hundred students participated in a mathematical contest. They had six problems to solve. It is known that each problem was correctly solved by at least 120 participants. Prove that there must be two participants such that every problem was solved by at least one of these two students.
8. Let S be a set of n distinct real numbers. Let A_{S} be the set of numbers that occur as averages of two distinct elements of S. For a given $n \geq 2$ what is the smallest possible number of elements in A_{S} ?
9. How many polynomials P with coefficients $0,1,2$ or 3 have $P(2)=n$, where n is a given positive integer? (Your answer will be a function of n of course.)
