
UT Putnam Prep Problems, Nov 2, 2016 (Go, Cubbies, Go!)
NUMBER-THEORY PUTNAM PROBLEMS

1. Find all positive integers that are within 250 of exactly 15 perfect squares. (Note: A
perfect square is the square of an integer; that is, a member of the set {0, 1, 4, 9, 16, . . .}.
We say “a is within n of b” if b− n ≤ a ≤ b + n.)

2. Find the smallest positive integer n such that for every integer m, with 0 < m < 1993,
there exists an integer k for which
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3. How many primes among the positive integers, written as usual in base 10, are such
that their digits are alternating 1s and 0s, beginning and ending with 1?

4. A composite (positive integer) is a product ab with a and b not necessarily distinct
integers in {2, 3, 4, . . .}. Show that every composite is expressible as xy+xz+ yz+ 1, with
x, y, and z positive integers.

5. For a given positive integer m, find all triples (n, x, y) of positive integers, with n
relatively prime to m, which satisfy (x2 + y2)m = (xy)n.

6. Prove that, for any integers a, b, c there exists a positive integer n such that√
n3 + an2 + bn + c

is not an integer.

7. Let N be the positive integer with 2016 decimal digits, all of them being 1, that is,
N = 111 . . . 111 (2016 digits). Find the thousandth digit after the decimal point of

√
N .

8. Let S be a finite set of integers, each greater than 1. Suppose that for each integer n
there is some s ∈ S such that either gcd(s, n) = 1 or gcd(s, n) = s. Show that there exists
s, t ∈ S such that gcd(s, t) is prime. [Here gcd(a, b) denotes the greatest common divisor
of a and b.]

9. Show that no four consecutive binomial coefficients can lie in an arithmetic progression:(
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