1. Suppose $A, B \in M_{4}(\mathbf{R})$ commute, and $\operatorname{det}\left(A^{2}+A B+B^{2}\right)=0$. Prove that

$$
\operatorname{det}(A+B)+3 \operatorname{det}(A-B)=6 \operatorname{det}(A)+6 \operatorname{det}(B)
$$

2. (10B1) Is there an infinite sequence of real numbers $a_{1}, a_{2}, a_{3}, \ldots$ such that

$$
a_{1}^{m}+a_{2}^{m}+a_{3}^{m}+\cdots=m
$$

for every positive integer m ?
3. (95A5) Let $x_{1}, x_{2}, \ldots, x_{n}$ be differentiable (real-valued) functions of a single variable f which satisfy

$$
\begin{gathered}
\frac{d x_{1}}{d t}=a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
\frac{d x_{2}}{d t}=a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\cdots \\
\frac{d x_{n}}{d t}=a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}
\end{gathered}
$$

for some constants $a_{i j}>0$. Suppose that for all $i, x_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$. Are the functions $x_{1}, x_{2}, \ldots, x_{n}$ necessarily linearly dependent?
4. (95A6) Suppose that each of n people writes down the numbers $1,2,3$ in random order in one column of a $3 \times n$ matrix, with all orders equally likely and with the orders for different columns independent of each other. Let the row sums a, b, c of the resulting matrix be rearranged (if necessary) so that $a \leq b \leq c$. Show that for some $n \geq 1995$, it is at least four times as likely that both $b=a+1$ and $c=a+2$ as that $a=b=c$.
5. Suppose $A \in M_{n}(\mathbf{C})$ has rank r, where $1 \leq r \leq n-1$ and $n>1$. Show that there exist matrices $B \in M_{n, r}(\mathbf{C})$ and $C \in M_{r, n}(\mathbf{C})$ with $A=B C$.
6. (Problem 2008-A-2). Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if its is zero. Which player has a winning strategy?
7. (1990-A-5). If A and B are square matrices of the same size such that $A B A B=0$, does it follow that $B A B A=0$?
8. (1994-A-4). Let A and B be 2×2 matrices with integer entries such that $A, A+B$, $A+2 B, A+3 B$, and $A+4 B$ are all invertible matrices whose inverses have integer entries. Show that $A+5 B$ is invertible and that its inverse has integer entries.

Now flip over for some additional practice with Axiomatic Mathematics!

BONUS ROUND! A vector space may be defined as a set V on which two binary operations called + and • are defined (respectively as functions $V \times V \rightarrow V$ and $\mathbf{R} \times V \rightarrow V$) subject to a set of axioms. We may express these axioms in the following way:
VS_{1}. For all $u, v, w \in V$ we have $u+(v+w)=(u+v)+w$
VS_{2}. For all $u, v \in V$ we have $u+v=v+u$
VS_{3}. There is a vector $u \in V$ so that for all $v \in V$ we have $u+v=v$
VS_{4}. For all $u, v, w \in V$, if $u+w=v+w$ then $u=v$; likewise if $w+u=w+v$ then $u=v$.
VS_{5}. For all $u, v \in V$ and all $a \in \mathbf{R}$ we have $a \cdot(u+v)=a \cdot u+a \cdot v$
VS_{6}. For all $u \in V$ and all $a, b \in \mathbf{R}$ we have $(a+b) \cdot u=a \cdot u+b \cdot u$
VS_{7}. For all $u \in V$ and all $a, b \in \mathbf{R}$ we have $(a b) \cdot u=a \cdot(b \cdot u)$
VS_{8}. For all $u \in V$ we have $1 \cdot u=u$
For each of these axioms, give an example of an object which satisfies all the axioms EXCEPT the given one, that is, a non-vector space that satisfies the other seven axioms.

Here's an example. Take the set V to be the set of real numbers; define "vector addition" on V to be ordinary addition of real numbers; and define "scalar multiplication" by

$$
c \cdot v=0 \quad \text { for all scalars } c \text { and vectors } v
$$

Then axioms VS_{1} through VS_{7} are satisfied but axiom VS_{8} is not. Your job is to construct other examples (saying exactly what V, "+", and "." are) where seven of the axioms are satisfied but the remaining one is not. (I'm looking for one example where VS_{1} is violated, another where VS_{2} is violated, etc.)

This can be done for seven of the axioms, but one of these axioms is actually redundant - it automatically follows from the other seven axioms. Which of the eight axioms is redundant?

