M 393C/CSE 396 Homework 2

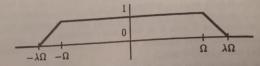
Due Tuesday, October 11, 2016

- Folland Section 7.3, problems 8, 9, and 10 (copied below). There is a typo in problem 10: f' + cf = 0 should be f'(x) + cxf(x) = 0.
 - 8. Suppose $f \in L^2(\mathbb{R})$, $\widehat{f}(\omega) = 0$ for $|\omega| > \Omega$, and $\lambda > 1$. a. As in the proof of the sampling theorem, show that

$$\widehat{f}(\omega) = \frac{\pi}{\lambda \Omega} \sum_{-\infty}^{\infty} f\left(\frac{n\pi}{\lambda \Omega}\right) e^{-in\pi\omega/\lambda \Omega} \quad \text{for} \quad |\omega| \le \lambda \Omega.$$

- 236 Chapter 7. The Fourier Transform
 - b. Let \widehat{g}_{λ} be the piecewise linear function sketched below. Show that the inverse Fourier transform of \hat{g}_{λ} is

$$g_{\lambda}(t) = \frac{\cos \Omega t - \cos \lambda \Omega t}{\pi (\lambda - 1) \Omega t^2}.$$



c. Observe that $\widehat{f}=\widehat{g}_{\lambda}\widehat{f}$. By substituting the expansion in part (a) into the Fourier inversion formula, show that

$$f(t) = \frac{1}{2\pi} \int_{-\lambda\Omega}^{\lambda\Omega} \widehat{f}(\omega) \widehat{g}_{\lambda}(\omega) e^{i\omega t} d\omega = \frac{\pi}{\lambda\Omega} \sum_{-\infty}^{\infty} f\left(\frac{n\pi}{\lambda\Omega}\right) g_{\lambda}\left(t - \frac{n\pi}{\lambda\Omega}\right)$$

This gives a sampling formula for f in which the basic functions $g_{\lambda}(t)$ decay like t^{-2} at infinity.

- 9. Suppose that f satisfies the hypotheses of Heisenberg's inequality, and let $F(x) = e^{-i\alpha x} f(x+a)$.

 - a. Show that $\Delta_{\alpha}f = \Delta_{0}F$. b. Show that $\widehat{F}(\xi) = e^{ia(\xi+\alpha)}\widehat{f}(\xi+\alpha)$ and thence that $\Delta_{\alpha}\widehat{f} = \Delta_{0}\widehat{F}$.
- 10. Show that Heisenberg's inequality $(\Delta_0 f)(\Delta_0 \widehat{f}) \geq \frac{1}{4}$ is an equality if and only if f' + cf = 0 where c is a real constant, and hence show that the functions that minimize the uncertainty product $(\Delta_0 f)(\Delta_0 \widehat{f})$ are precisely those of the form $f(x) = Ce^{-cx^2/2}$ for some c > 0. (Hint: Examine the proof of Heisenberg's inequality and recall that the Cauchy-Schwarz inequality $|\int fg| \le ||f|| \, ||g||$ is an equality if and only if f and g are scalar multiples of one another.) What are the minimizing functions for the uncertainty product $(\Delta_a f)(\Delta_\alpha \hat{f})$ for general a, α ? (Cf. Exercise 9.)
- Folland Section 3.3, problem 4: Suppose $\{\phi_n\}$ is an orthonormal basis for $L^2(a,b)$. Suppose c>0 and $d\in\mathbb{R}$, and let $\psi_n(x)=c^{1/2}\phi_n(cx+d)$. Show that $\{\psi_n\}$ is an orthonormal basis for $L^2(\frac{a-d}{c},\frac{b-d}{c})$.
- Folland Section 3.3, problem 11: Suppose f is of class $C^{(1)}$, 2π -periodic, and real-valued. Show that f' is orthogonal to f in $L^2(-\pi,\pi)$ in two ways: (a) by expanding f in a Fourier series and using Parseval's Theorem: $\langle f, g \rangle = \sum \langle f, \phi_n \rangle \overline{\langle g, \phi_n \rangle}$, (b) directly from the fact that $2ff' = (f^2)'$.

 \bullet Folland 2.6, problem 1 (Gibbs' phenomenon) (copied below). The referenced equations (2.10) and (2.12) are that the Nth Dirichlet kernel is given by

$$D_N(\phi) = \frac{1}{2\pi} \sum_{n=-N}^{n=N} e^{in\phi} = \frac{1}{2\pi} \frac{\sin((N + \frac{1}{2})\phi)}{\sin(\frac{1}{2}\phi)}$$

2.6 Further remarks on Fourier series 61

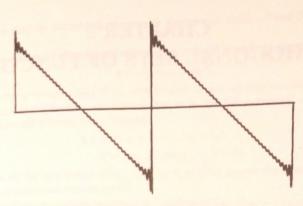


Figure 2.8. Graph of $2\sum_{1}^{40}n^{-1}\sin n\theta$, $-2\pi<\theta<2\pi$ (an illustration of the Gibbs phenomenon).

EXERCISE

1. Recall from Table 1, §2.1, that $f(\theta) = 2\sum_{1}^{\infty} n^{-1} \sin n\theta$ is the 2π -periodic function that equals $\pi - \theta$ for $0 < \theta < 2\pi$. Let

$$g_N(\theta) = 2\sum_{1}^{N} \frac{\sin n\theta}{n} - (\pi - \theta),$$

so that $g(\theta)$ is the difference between $f(\theta)$ and its Nth partial sum for $0 < \theta < 2\pi$.

- a. Show that $g'_N(\theta) = 2\pi D_N(\theta)$ where D_N is the Dirichlet kernel (2.10).
- b. Using (2.12), show that the first critical point of $g_N(\theta)$ to the right of zero occurs at $\theta_N = \pi/(N + \frac{1}{2})$, and that

$$g_N(\theta_N) = \int_0^{\theta_N} \frac{\sin(N + \frac{1}{2})\theta}{\sin\frac{1}{2}\theta} d\theta - \pi.$$

c. Show that

$$\lim_{N\to\infty}g_N(\theta_N)=2\int_0^\pi\frac{\sin\phi}{\phi}d\phi-\pi.$$

(Hint: Let $\phi = (N + \frac{1}{2})\theta$.) This limit is approximately equal to .562. Thus the difference between $f(\theta)$ and the Nth partial sum of its Fourier series develops a spike of height .562 (but of increasingly narrow width) just to the right of $\theta = 0$ as $N \to \infty$. (There is another such spike on the left.)