Algebraic Topology

Homework 3: Due September 15

- 1. Page 42, problem 3.2
- 2. Page 46, problem 4.9. You may want to do 4.8 as a warm-up. Also, you should assume that S is not a sphere.
 - 3. Page 49, problem 5.1
 - 4. Page 50, problem 5.2
 - 5. Page 50, problem 5.3.

Problem 6. Let X be any topological space. (If you want, you can restrict your attention to Hausdorff spaces, but it really doesn't matter.) let $Y = [0,1] \times X/\sim$, where $(0,x)\sim(0,y)$ for all $x,y\in X$. Y is called the *cone* of X, and the equivalence class of (0,x) is called the *cone point*. Prove that Y is path-connected (easy) and simply connected.

Problem 7. Let X be any topological space, and let $Y = [0,1] \times X/\sim$, where $(0,x)\sim (0,y)$ and $(1,x)\sim (1,y)$ for all $x,y\in X$. Y is called the *(free) suspension* of X, and is sometimes denoted SX. (The reduced suspension ΣX is a slightly different space that doesn't concern us here. Look up Suspension (topology) on Wikipedia if you want the definition.) For instance, S^{k+1} is the suspension of S^k . Prove that if X is path-connected, then Y is simply-connected.