Algebraic Topology

Homework 6: Due October 8

- 1. Page 94, problems 3.1 and 3.2. Both of these were essentially done in class, but spell them out anyway.
- 2. As noted in class, the *Hawaiian Earring* is the union of infinitely many circles of decreasing diameter, all meeting at a point. For instance, for each positive integer n let S_n be a circle of radius 1/n in the plane, centered at (1/n,0), and let $X = \bigcup_n S_n$. (It helps to DRAW A PICTURE!) Let $x_0 = (0,0)$. Show that this example does not meet the hypotheses of Exercise 3.2. (Again, already more or less done in class.)
- 3. Not only does the Hawaiian Earring not meet the hypotheses of Exercise 3.2, it also doesn't meet the conclusions. Show that the inclusions $i_n: S_n \hookrightarrow X$ induce injections $\pi_1(S_n, x_0) \to \pi_1(X, x_0)$, and hence an injection $f: \prod^* \pi_1(S_n, x_0) \hookrightarrow \pi_1(X, x_0)$, but that f is not onto. In other words, $\pi_1(X, x_0)$ is *not* the free product of all of the cyclic groups $\pi_1(S_n, x_0)$. [Hint: Can every loop in X be expressed by a finite concatenation of loops in the S_n 's?]
- 4. Page 94, problem 3.4. Hint: with the correct choice of open sets, this is an easy corollary of problem 3.2.
 - 5. Page 95, problem 3.7.
 - 5. Page 103, problem 5.4.
- 6. Let X_2 be a path-connected Hausdorff space, let k > 2, and let $f: S^{k-1} \to X_2$ be a continuous map. Let B be the closed unit ball in \mathbb{R}^k , and for each $x \in S^{k-1} \subset B$, identify x with $f(x) \in X_2$. Let X be the union of X_2 with B, modulo these identifications. This is called *adjoining a k-cell to* X_2 . Let $x_0 \in X_2$. Show that $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X_2, x_0)$.
- 7. Let X_1 be another path-connected Hausdorff space, and let X_2 be obtained by adjoining a 2-cell to X_1 . Let $x_0 \in X_1$. Show that the inclusion $X_1 \hookrightarrow X_2$ induces a surjection $\pi_1(X_1, x_0) \to \pi_1(X_2, x_0)$. Give an example where this surjection is not an isomorphism.

The importance of exercises 6 and 7 is that it is possible to build any manifold, and a lot of other spaces, recursively. To get a space X, start with a set X_0 of disconnected points, called the 0-skeleton of X. Then add 1-cells to get a graph X_1 that is called the 1-skeleton. Then add 2-cells to X_1 to get X_2 , add 3-cells to X_2 to get X_3 , and in general add k-cells to the k-1 skeleton X_{k-1} to get the k-skeleton X_k . Finally, take $X = \bigcup_k X_k$. The upshot is that $\pi_1(X)$ is isomorphic to $\pi_1(X_2)$, and is a quotient of $\pi_1(X_1)$ by some relations that come from the 2-cells. This is both a blessing and a curse. The blessing is that we don't have to worry about higher dimensional structures when computing a fundamental group. The curse is that we can't use the fundamental group to keep track of higher dimensional structures. To do that we need other tools, such as homology.