On L’Hopital’s Rule

There are three versions of L’Hopital’s Rule, which I call “baby L’Hopital’s
rule”, “macho L’Hopital’s rule” and “extended L’Hopital’s rule”. The baby
and macho versions refer to the problem of evaluating lim,_,, f(z)/g(x),
where lim,_,, f(x) = lim,_, g(z) = 0. In other words, indeterminate forms
of the type “0/0”, with a finite. (Also to limits as © — a™ and as © — a™.)
The extended form also applies to forms of the type oco/oc and to limits as
r — *£o0.

1 The three theorems

Theorem 1 (Baby L’Hépital’s Rule) Let f(z) and g(z) be continuous
functions on an interval containing x = a, with f(0) = ¢g(0) = 0. Suppose
that f and g are differentiable, and that ' and g’ are continuous. Finally,
suppose that g'(a) # 0. Then
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The baby version is easy to prove, and is good enough to compute limits
like (o
lim sin x)
=0 x + 22

(1)
However, it isn’t good enough to compute limits like
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lim cos(2z)
z—0 2

, (2)

since in that case ¢’(0) = 0. To solve problems like (2), we need the macho
version:



Theorem 2 (Macho L’Hoépital’s Rule) Suppose that f and g are contin-
uous on a closed interval [a,b], and are differentialble on the open interval
(a,b). Suppose that ¢'(x) is never zero on (a,b), and that lim, .+ f'(x)/q' (x)
exists, and that lim, .+ f(z) = lim, .+ g(z) = 0. Then
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Note that this theorem doesn’t require anything about ¢'(a), just about
how ¢’ behaves to the right of a. An analogous theorem applies to the limit
as £ — a~ (and requires f and g and f" and ¢’ to be defined on an interval
that ends at a, rather than one that starts at a). You can combine the two
to get a theorem about an overall limit as z — a.

The conclusion of Macho L'Hépital’s Rule relates one limit (of f/g) to
another limit (of f’/¢’), and not to the value of f'(a)/¢'(a). This is what
allows the theorem to be used recursively to solve problems like (2). Finally,
we have the

Theorem 3 (Extended L’Hépital’s Rule) L’Hépital’s rule applies to in-
definite forms of type “co/oo” as well as 0/07, and applies to limits as
x — F00 as well as to limits x — a™. In all of these cases,
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2 Proofs of the baby and macho theorems

Suppose that f(a) = g(a) = 0 and ¢'(a) # 0. Then, for any z, f(x) =
f(z) — f(a) and g(z) = g(z) — g(a). But then,
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since, by definition, f'(a) = limxﬁa%g(a) and ¢'(a) = lim,_,, g(mi:(gl(a).

Since f’ and ¢' are assumed to be continuous, this is also
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That proves the baby version.

To prove the macho version, we first need a lemma:

Theorem 4 (Souped up Mean Value Theorem) If f(x) and g(x) are
continuous on a closed interval [a,b] and differentiable on the open interval
(a,b), then there is a point c, between a and b, where

(f(b) = f(a))g'(c) = (g(b) — g(a)) f'(c). (3)
(When g(x) = z, this is the same as the usual MVT.)

Proof of Souped up MVT: Consider the function
hz) = (f(z) — f(a))(9(b) — g(a)) — (f(b) — f(a))(9(z) — g(a)).

This is continuous on [a, b] and differentiable on (a,b), with

W(x) = f'(x)(9(b) — g(a)) — ¢'()(f(b) = f(a)).

Note that h(a) = 0 = h(b). By Rolle’s Theorem, there a spot ¢ where
h'(c) = 0. But h'(c) = 0 is the same as equation (3).

Proof of Macho L’Hopital’s Rule: By assumption, f and g are differ-
entiable to the right of a, and the limits of f and g as x — a™ are zero.
Define f(a) to be zero, and likewise define g(a) = 0. Since these values agree

with the limits, f and g are continuous on some half-open interval [a,b) and
differentiable on (a,b).

For any z € (a,b), we have that f and ¢ are differentiable on (a,x) and
continuous on [a, x]. By the Souped up MVT, there is a point ¢ between a and
x such that f'(c)g(z) = f'(x)g(c). In other words, f'(¢)/¢'(c) = f(z)/g(x).
Also, as = approaches a, ¢ also approaches a, since ¢ is somewhere between
x and a. But then
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That last expression is the same as lim,_,,+ f'(x)/4¢'(z).
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3 Proving the extended theorem

We're going to use a single trick, over and over again. Namely, we can always
rewrite x as 1/(1/xz), f(z) as 1/(1/f(x)) and g(z) as 1/(1/g(x)).

Suppose L = lim,_,, % where both f and g go to co (or —c0) as z — a.

(z)’

Also suppose that L is neither 0 nor infinite. Then
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Since 1/g(x) and 1/f(z) go to zero as x — a, we can apply the (baby or
macho) L’Hopital’s rule to this limit:

L =

limg o[ f'(z)/ g ()]
Since L = L?/lim, ,[f'(z)/¢ (x)], L must equal lim, ,,[f"(z)/¢'(x)], which

is what we wanted to prove.

This argument only works for finite and nonzero values of L. However, if
L =0, we can apply the same argument to the limit of (f(z) + g(z))/g(z),
which then does not equal zero. The upshot is that
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hence that lim(f/g) = lim(f’/¢’). Finally, if lim(f/g) = +o0, look instead
at lim(g/f), which is then zero, so the previous reasoning applies. Since
0 = lim(g/f) = lim(¢'/f"), im(f’/¢’) must be infinite. By the Souped up
MVT, f/g has the same sign as f’/'¢’, so we must have lim(f/g) = im(f'/q’).

Now that we have L’Hopital’s Rule for limits as z — a (or z — a™ or
x — a~ ), we consider what happens as x — oo. Define a new variable

4



t =1/x, so that © — oo is the same as t — 0%. Then
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But we know how to apply L’Hopital’s Rule to limits as ¢ — 0, so this turns

into
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Converting back to x = 1/t, we get
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which is what we wanted. Computing a limit as x — —oo is similar, only
with ¢ — 07 instead of t — 0.

That completes the proof of the Extended L’Hopital’s Rule.



