
On L’Hôpital’s Rule

There are three versions of L’Hôpital’s Rule, which I call “baby L’Hôpital’s
rule”, “macho L’Hôpital’s rule” and “extended L’Hôpital’s rule”. The baby
and macho versions refer to the problem of evaluating limx→a f(x)/g(x),
where limx→a f(x) = limx→a g(x) = 0. In other words, indeterminate forms
of the type “0/0”, with a finite. (Also to limits as x → a+ and as x → a−.)
The extended form also applies to forms of the type ∞/∞ and to limits as
x → ±∞.

1 The three theorems

Theorem 1 (Baby L’Hôpital’s Rule) Let f(x) and g(x) be continuous
functions on an interval containing x = a, with f(0) = g(0) = 0. Suppose
that f and g are differentiable, and that f ′ and g′ are continuous. Finally,
suppose that g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
=

f ′(a)

g′(a)
.

Also,

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)

and

lim
x→a−

f(x)

g(x)
= lim

x→a−

f ′(x)

g′(x)
.

The baby version is easy to prove, and is good enough to compute limits
like

lim
x→0

sin(2x)

x+ x2
. (1)

However, it isn’t good enough to compute limits like

lim
x→0

1− cos(2x)

x2
, (2)

since in that case g′(0) = 0. To solve problems like (2), we need the macho
version:
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Theorem 2 (Macho L’Hôpital’s Rule) Suppose that f and g are contin-
uous on a closed interval [a, b], and are differentialble on the open interval
(a, b). Suppose that g′(x) is never zero on (a, b), and that limx→a+ f ′(x)/g′(x)
exists, and that limx→a+ f(x) = limx→a+ g(x) = 0. Then

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
.

Note that this theorem doesn’t require anything about g′(a), just about
how g′ behaves to the right of a. An analogous theorem applies to the limit
as x → a− (and requires f and g and f ′ and g′ to be defined on an interval
that ends at a, rather than one that starts at a). You can combine the two
to get a theorem about an overall limit as x → a.

The conclusion of Macho L’Hôpital’s Rule relates one limit (of f/g) to
another limit (of f ′/g′), and not to the value of f ′(a)/g′(a). This is what
allows the theorem to be used recursively to solve problems like (2). Finally,
we have the

Theorem 3 (Extended L’Hôpital’s Rule) L’Hôpital’s rule applies to in-
definite forms of type “∞/∞” as well as “0/0”, and applies to limits as
x → ±∞ as well as to limits x → a±. In all of these cases,

lim
f(x)

g(x)
= lim

f ′(x)

g′(x)
.

2 Proofs of the baby and macho theorems

Suppose that f(a) = g(a) = 0 and g′(a) 6= 0. Then, for any x, f(x) =
f(x)− f(a) and g(x) = g(x)− g(a). But then,

lim
x→a

f(x)

g(x)
= lim

x→a

f(x)− f(a)

g(x)− g(a)

= lim
x→a

[f(x)− f(a)]/(x− a)

[g(x)− g(a)]/(x− a)

=
limx→a([f(x)− f(a)]/(x− a))

limx→a([g(x)− g(a)]/(x− a))

=
f ′(a)

g′(a)
,
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since, by definition, f ′(a) = limx→a
f(x)−f(a)

x−a
and g′(a) = limx→a

g(x)−g(a)
x−a

.
Since f ′ and g′ are assumed to be continuous, this is also

limx→a f
′(x)

limx→a g′(x)
= lim

x→a

f ′(x)

g′(x)
.

That proves the baby version.

To prove the macho version, we first need a lemma:

Theorem 4 (Souped up Mean Value Theorem) If f(x) and g(x) are
continuous on a closed interval [a, b] and differentiable on the open interval
(a, b), then there is a point c, between a and b, where

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c). (3)

(When g(x) = x, this is the same as the usual MVT.)

Proof of Souped up MVT: Consider the function

h(x) = (f(x)− f(a))(g(b)− g(a))− (f(b)− f(a))(g(x)− g(a)).

This is continuous on [a, b] and differentiable on (a, b), with

h′(x) = f ′(x)(g(b)− g(a))− g′(x)(f(b)− f(a)).

Note that h(a) = 0 = h(b). By Rolle’s Theorem, there a spot c where
h′(c) = 0. But h′(c) = 0 is the same as equation (3).

Proof of Macho L’Hôpital’s Rule: By assumption, f and g are differ-
entiable to the right of a, and the limits of f and g as x → a+ are zero.
Define f(a) to be zero, and likewise define g(a) = 0. Since these values agree
with the limits, f and g are continuous on some half-open interval [a, b) and
differentiable on (a, b).

For any x ∈ (a, b), we have that f and g are differentiable on (a, x) and
continuous on [a, x]. By the Souped up MVT, there is a point c between a and
x such that f ′(c)g(x) = f ′(x)g(c). In other words, f ′(c)/g′(c) = f(x)/g(x).
Also, as x approaches a, c also approaches a, since c is somewhere between
x and a. But then

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(c)

g′(c)
= lim

c→a+

f ′(c)

g′(c)
.

That last expression is the same as limx→a+ f ′(x)/g′(x).
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3 Proving the extended theorem

We’re going to use a single trick, over and over again. Namely, we can always
rewrite x as 1/(1/x), f(x) as 1/(1/f(x)) and g(x) as 1/(1/g(x)).

Suppose L = limx→a
f(x)
g(x)

, where both f and g go to ∞ (or −∞) as x → a.
Also suppose that L is neither 0 nor infinite. Then

L = lim
x→a

f(x)

g(x)
= lim

x→a

1/g(x)

1/f(x)
.

Since 1/g(x) and 1/f(x) go to zero as x → a, we can apply the (baby or
macho) L’Hôpital’s rule to this limit:

L = lim
x→a

(1/g)′

(1/f)′

= lim
x→a

−g′(x)/g(x)2

−f ′(x)/f(x)2

= lim
x→a

f(x)2g′(x)

g(x)2f ′(x)

= lim
x→a

f(x)2

g(x)2
lim
x→a

g′(x)

f ′(x)

=
L2

limx→a[f ′(x)/g′(x)]
.

Since L = L2/ limx→a[f
′(x)/g′(x)], L must equal limx→a[f

′(x)/g′(x)], which
is what we wanted to prove.

This argument only works for finite and nonzero values of L. However, if
L = 0, we can apply the same argument to the limit of (f(x) + g(x))/g(x),
which then does not equal zero. The upshot is that

1 + lim
x→a

f(x)

g(x)
= lim

x→a

f(x) + g(x)

g(x)
= lim

x→a

f ′(x) + g′(x)

g′(x)
= 1 + lim

x→a

f ′(x)

g′(x)
,

hence that lim(f/g) = lim(f ′/g′). Finally, if lim(f/g) = ±∞, look instead
at lim(g/f), which is then zero, so the previous reasoning applies. Since
0 = lim(g/f) = lim(g′/f ′), lim(f ′/g′) must be infinite. By the Souped up
MVT, f/g has the same sign as f ′/′g′, so we must have lim(f/g) = lim(f ′/g′).

Now that we have L’Hôpital’s Rule for limits as x → a (or x → a+ or
x → a−), we consider what happens as x → ∞. Define a new variable
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t = 1/x, so that x → ∞ is the same as t → 0+. Then

lim
x→∞

f(x)

g(x)
= lim

t→0+

f(1/t)

g(1/t)
.

But we know how to apply L’Hôpital’s Rule to limits as t → 0, so this turns
into

lim
t→0+

d
dt
f(1/t)

d
dt
g(1/t)

= lim
t→0+

−f ′(1/t)/t2

−g′(1/t)/t2
= lim

t→0+

f ′(1/t)

g′(1/t)
.

Converting back to x = 1/t, we get

lim
x→∞

f ′(x)

g′(x)
,

which is what we wanted. Computing a limit as x → −∞ is similar, only
with t → 0− instead of t → 0+.

That completes the proof of the Extended L’Hôpital’s Rule.
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