
Lie Groups, Problem Set # 1 Solutions

1) Show that the function f(t) = exp(at)[cos(bt)+i sin(bt)] has f ′(t) = (a+bi)f(t)
and f(0) = 1. In other words, that exp((a+ bi)t) = f(t).

Solution: By the product rule, f ′(t) = a exp(at)[cos(bt)+i sin(bt)]+exp(at)[−b sin(bt)+
ib cos(bt)] = af(t)+ibf(t) = (a+bi)f(t). Of course, f(0) = exp(0)[cos(0)+i sin(0)] =
1.

2) There are several different norms that can be used for n × n matrices. These
include (a) ‖X‖1 =

∑
i,j |Xij|, ‖X‖22 =

∑
i,j |Xij|2, and ‖X‖op = supv |Xv|, where v

ranges over unit vectors in Rn or Cn, depending on context, and we are using the
Euclidean norm for vectors. For each of these norms, show that ‖XY ‖ ≤ ‖X‖‖Y ‖,
and bound each of these norms by a multiple of the others. (The constants will
depend on n).

Solution: (a) ‖XY ‖ =
∑

ij |XYij| =
∑

ij |
∑

kXikYkj| ≤
∑

ijk |Xik||Ykj| ≤
∑
ijkl|Xik||Ylj| =

‖X‖1‖Y ‖1. (b) By the Schwartz inequality, |XYij|2 is bounded by the squared norm
of the i-th row of X times the squared norm of the j-th column of Y . Summing over
i and j gives ‖XY ‖22 ≤ ‖X‖22‖Y ‖22. (c) For any nonzero vector v, |Y v| ≤ ‖Y ‖op|v|
and |X(Y v)| ≤ ‖Xop‖|Y v|, so |XY v| ≤ ‖X‖op‖Y ‖op|v|. Restricting to unit vectors
and taking a maximum we get that ‖XY ‖op ≤ ‖X‖op‖Y ‖op.

First we compare the ‖ · ‖1 and ‖ · ‖2 norms. Note that ‖X‖21 =
∑

ijkl |XijXkl| ≥∑
ij |Xij|2 = ‖X‖22, so ‖X‖2 ≤ ‖X‖1, with equality achieved if and only if at most

one matrix element of X is nonzero. Let Z1 be a matrix whose every element is 1,
and suppose that the entries of X are all non-negative real numbers (as this does
not affect either ‖ · ‖1 or ‖ · ‖2.) Then ‖X‖1 = Tr(XZ1) ≤ ‖X‖2‖Z1‖2 = n‖X‖2,
by the Schwartz inequality, since Tr(XZ1) is the inner product of X and Z1. The
bound ‖X‖1 ≤ n‖X‖2 is achieved when all the matrix elements of X have the same
magnitude.

Now consider the ‖ · ‖op norm. For any vector v, |Xv|2 = v∗X∗Xv, where ∗

denotes the Hermitian conjugate (transpose of complex conjugate). Since X∗X is a
Hermitian matrix, the expression v∗X∗Xv is a weighted average of the eigenvalues
of X∗X. This is bounded by the largest eigenvalue, which in turn is bounded by
trace of X∗X (since all eigenvalues are non-negative), which is precisely ‖X‖22. Thus
‖X‖op ≤ ‖X‖2, with equality if (and only if) X has rank 1. This in turn is bounded
by ‖X‖1, so ‖X‖op ≤ ‖X‖1, with equality if only one element of X is nonzero. Now
|Xei| ≤ ‖X‖op, so ‖X‖22 =

∑
i |Xei|2 ≤ n‖X‖2op, so ‖X‖2 ≤

√
n‖X‖op, and hence

‖X‖1 ≤ n3/2‖X‖op. These estimates are not sharp.



3) a) Show that for any matrices X and Y , ‖(X + Y )n −Xn‖ ≤ (‖X‖+ ‖Y ‖)n −
‖X‖n. Here ‖ · ‖ denotes any of the norms we discussed in problem 2.

b) Show that, if F is a power series whose radius of convergence is σ, then F (X)
is continuous as a function of the matrix X for all ‖X‖ < σ.

Solution: a) Expanding (X + Y )n − Xn gives a sum of 2n − 1 terms, each a
monomial is X and Y whose norm is bounded by ‖X‖i‖Y ‖j, where the monomial
contains i powers of X and j powers of Y . Summing these norms gives exactly
(‖X‖+ ‖Y ‖)n − ‖X‖n.

b) Let F (x) =
∑
anx

n, and let F̃ (x) =
∑
|an|xn. F and F̃ have the same radius

of convergence, so if ‖X‖ < σ and ‖Y ‖ < σ − ‖X‖, then ‖F (X + Y ) − F (X)‖ ≤∑
‖an((X + Y )n − Xn)‖ ≤

∑
|an|((‖X‖ + ‖Y ‖)n − ‖X‖n), which goes to zero as

‖Y ‖ → 0, thanks to the continuity of F̃ as a function of a scalar variable.

4) Prove the Substitution Principle as described on page 13, Remark 2, with the
following important modification to part (c). Specifically, assume that F (z) and G(z)
are power series with radii of convergence σ and ρ. Let X be a real or complex matrix.
Show that
(a) (F +G)(X) = F (X) +G(X) if ‖X‖ < min(σ, ρ),
(b) (FG)(X) = F (X)G(X) if ‖X‖ < min(σ, ρ), and
(c) (F ◦G)(X) = F (G(X)), if ‖X‖ < ρ, ‖G(X)‖ < σ, G(0) = 0 and ‖X‖ is less than
the radius of convergence of F ◦ G. The left hand sides should be viewed as power
series in X with the coefficients given by the appropriate series for scalar functions.

Solution: With the previous problem under our belts, this becomes an exercise in
diagonalization. If X is diagonal, then the identities hold one entry at a time. If X
is diagonalizable, then after conjugation the same thing holds, since the eigenvalues
are all bounded by ‖X‖. However, the diagonalizable matrices are dense. Since both
sides of the identities are continuous, the result extends to all matrices.

You can also get parts (a) and (b) directly. The primary issue is absolute con-
vergence. If a series converges absolutely, then you can rearrange the order of the
terms without changing the answer. If it only converges conditionally, then rear-
ranging the terms is not allowed. Note that for any analytic function, the series
converges absolutely for arguments less than the radius of convergence, since the
terms are bounded by a geometric series. This extends to matrix valued functions,
since ‖

∑N
k=n ckX

k‖ ≤
∑N

k=n |ck|‖X‖k, insofar as ‖Xk‖ ≤ ‖X‖k.

For (a), we have that the series for F and G both converge absolutely, so their
sum converges absolutely, so (f0 + f1X + f2X

2 + cdots) + (g0 + g1X + g2X
2 + · · ·) =

(f0 + g0) + (f1 + g1)X + (f2 + g2)X
2 + · · ·. The left hand side is F (X) +G(X), while

the right hand side is (F +G)(X).



The same reasoning works for (b). Since the sum of the norms of the terms
in F and G are each finite, the sum

∑∞
i,j=0 figjX

i+j converges absolutely, so we

can write it either as
∑

i

∑
j figjX

i+j =
∑

i fiX
i
∑

j gjX
j = F (X)G(X), or as∑∞

k=0

∑k
i=0 figk−iX

k, which is the power series for (FG)(X).

Unfortunately, I couldn’t get this approach to work for (c). If any of you succeeded
where I failed, more power to you!

[Addendum on Sept 5. The assumptions for part (c) still aren’t strong enough,
and here’s a counter-example for scalars. Let G(x) = ex−1 and let F (x) = log(x+1).
Then the power series for F ◦G is just x. Furthermore, ρ =∞, σ = 1, and G(2πi) =
0 < σ. However, 2πi = (F ◦ G)(2πi) 6= F (G(2πi)) = 0. The correct statement is
that the identity (F ◦G)(x) = F (G(x)) for scalars has its own radius of convergence
η, and that (F ◦ G)(X) = F (G(X)) applies for matrices when ‖X‖ < η. With this
assumption, the proof that I gave several paragraphs earlier works fine.]

5) The B-C-H formula allows us to compute Z, where exp(Z) = exp(X) exp(Y ),
as a sum Z = X+Y +

∑∞
k=2 hk, where hk is a homogeneous polynomial of degree k in

X and Y , and where X and Y are assumed to be sufficiently small. The remarkable
fact is that hk is actually a sum of iterated brackets, but in this problem we’re just
going to think it as a polynomial.
a) Show how to compute hk iteratively from the previous h’s.
b) Use your method to compute h2 and h3, and express your answers as (possibly
iterated) brackets.

Solution: The order k piece of exp(Z) is hk plus various products of lower-order

terms. hk is therefore
∑k

j=0
Xj

j!
Y k−j

(k−j)! minus the products of the lower-order terms.

Specifically, the quadratic part of exp(Z) is h2 + (X + Y )2/2, so h2 = X2/2 +XY +
Y 2/2 − (X + Y )2/2 = (XY − Y X)/2 = [X, Y ]/2, and the cubic part of exp(Z) is
(X+Y )3

6
+ (X+Y )h2

2
+ h2(X+Y )

2
+h3 = 2X3+5X2Y+2XYX−Y X2+5XY 2+2Y XY−Y X2+2Y 3

12
+h3, so

h3 =
X2Y − 2XYX + Y X2 +XY 2 − 2Y XY + Y 2X

12
=

[X, [X, Y ]]− [Y, [X, Y ]]

12
(1)

6) Section 1.2, problems 1, 2

Solution to 1.2.1: If X is nilpotent with Xk = 0, then the series for a = exp(X)
terminates after the Xk−1 term, so there is no issue of convergence. But then (1− a)
is a sum of positive powers of X, so (1− a)k = 0, so a is unipotent. Likewise, if a is
unipotent with (1 − a)k = 0, then the series for log(a) terminates after k − 1 terms,
and X = log(a) is a sum of powers of (1− a), so Xk = 0. This shows that exp maps
the nilpotents to the unipotents and that log maps the unipotents to the nilpotents.



What remains is to show that these are inverse operations. This follows from a
modification of the Substitution Principle. We already know that after a suitable
rearrangement of terms, the power series of log(exp(x)) is exactly x. But the series
for log(exp(X)) has only a finite number of nonzero terms, so all rearrangements are
OK. Likewise for exp(log(a)).

Solution to 1.2.2: a) If X is semisimple, then X = PDP−1, where D is diagonal
and the columns of P are the eigenvectors of X. But then exp(X) = P exp(D)P−1

is also semisimple, with the same eigenvectors and with eigenvalues that are the
exponentials of the eigenvalues of X.

b) If a is invertible and semisimple, then a = PdP−1, with d diagonal with all
nonzero eigenvalues. But then we can take the logs of all of the diagonal entries of d
to get a diagonal matrix D with exp(D) = d. Furthermore we can choose our branch
for the log function so that the imaginary part of the entries of D are all in [0, 2π).
But then exp(PDP−1) = PdP−1 = a.

c) First note that this is FALSE if we do not make the assumption about eigen-

values of X not differing by multiples of 2πi. The matrices X =

(
0 0
0 2πi

)
and

X ′ =

(
0 1
0 2πi

)
have exp(X) = exp(X ′) = I.

Assuming that no two eigenvalues of X differ by a nonzero multiple of 2πi, I claim
that a vector v is an eigenvector of exp(X) if and only it is an eigenvector of X. The
“if” follows from part (a). The “only if” depends on the fact that the exponentials
of the eigenvalues of X are all different. If v is a nontrivial linear combination of
eigenvectors of X with different eigenvalues, then it is a nontrivial linear combination
of eigenvectors of exp(x) with different eigenvalues, and hence is not an eigenvector
of exp(X).

We now proceed to the proposition. If X and X ′ are simultaneously diagonaliz-
able, with entries differing by multiples of 2πi, then their exponentials are manifestly
the same. Conversely, if exp(X) = exp(X ′), then every eigenvector of X ′ is an eigen-
vector of exp(X ′) = exp(X), and hence is an eigenvector of X. Thus, X and X ′ are
simultaneously diagonalizable. For the exponentials of the eigenvalues to agree, the
eigenvalues must differ by multiples of 2πi.


