
Lie Groups Solutions, (Optional) Problem Set # 11

Section 6.3:

Problem 6.3.1: (a) Since the irreducible characters span the space of class func-
tions, the number of such characters is the dimension of this space. But a class
function is determined by its value on each conjugacy class, so the dimension of the
space of class functions is the number of classes.

(b) If ρ is the left (or right) -regular representation, the trace of ξρ(a) is the number
of elements of the group fixed by left (or right) multiplication by a (or a−1). This is
|G| (NOT 1/|G|) if a = 1 and 0 otherwise, since ax = x if and only if a = 1.

(c) A basis for CX is the indicator functions of each point x. Since the action of
the group permutes these functions, the trace of π(a) is the number of functions that
are left fixed, which is the set of x for which a−1x = x, which is the set of x for which
x = ax, which is |Xa|.

6.3.3: SinceG is compact, we can assume that π(a) is unitary, hence diagonalizable
with eigenvalues λ1, . . . , λn. If x and y are eigenvectors of π(a) with eigenvalues λi
and λj, then x⊗ y + y ⊗ x is an eigenvector of Sym2π(a) with eigenvalue λiλj. Note
that we can assume i ≤ j, but equality IS allowed. Then

Sym2χ(a) =
∑
i≤j

λiλj,

which counts each distinct i, j once and each repeated index once. Meanwhile, χ(a)2 =∑
i λi

∑
j λj =

∑
i,j λiλj. This sum counts each pair of distinct i, j twice and each

repeated index once. Adding χ(a2) =
∑

i λ
2
i and dividing by two gives Sym2χ(a) =

1
2
(χ(a)2 + χ(a2)).

The eigenvectors of Alt2π(a) are x⊗y−y⊗x, with eigenvalues λiλj with i strictly
less than j. The sum of these is 1

2
(χ(a)2 − χ(a2))

(b) Since Sym2χ(a) + Alt2χ(a) = ξ(a)2, which is the trace of π(a) ⊗ π(a), we
in particular have Sym2χ(1) + Alt2χ(1) = n2, where n is the dimension of V . But
χλ(1) gives the dimension of a representation, so the Sym2 and Alt2 spaces have total
dimension n2. Since their intersection is trivial, their sum is all of V ⊗ V . Of course,
this is easy to see directly, since x⊗ y = 1

2
((x⊗ y + y ⊗ x) + (x⊗ y − y ⊗ x)).

Section 6.4

Problem 6.4.1: (a) The test for whether a representation is irreducible is whether
1
|G|

∫
G
|χ(a)|2da = 1. But χλ(a) = ξκ(a)/∆(a), so χλ(eiθa) = ei

∑
`iθχλ(a), so the

average value of |χ(a)|2 over U(n) is the same as the average value over SU(n). Thus
χλ, restricted to SU(n), is an irreducible character.



(b) Suppose we have an irreducible representation of SU(n) that does not extend
to a representation of U(n), and let χ be its character. In L2(SU(n)), χ is orthogonal
to all of the other irreducible characters of SU(n), and in particular to the restrictions
of the irreducible characters of U(n). We will extend χ to a class function on U(n)
that is orthogonal to all of these characters of U(n). That will be a contradiction,
since the characters of U(n) span the class functions on U(n).

Every matrix a ∈ U(n) whose determinant is close to 1 (say, with positive real
part) can be uniquely written as a product eiθb, where b ∈ SU(n) and |θ| < π/2n.
Let g be a bump function with support in (−π/2n, π/2n), and let f(a) = g(θ)χ(b)
for a’s whose determinants have positive real part, and let f(a) = 0 if det(a) has
negative or zero real part. Then f is our desired class function that is orthogonal to
all of the irreducible characters of U(n).

(c) Acting on a diagonal matrix t, eiλ(t) =
∏
εlii =

∏n−1
i=1 ε

li−ln
i on SU(n), since

εn = (
∏n−1

i=1 εi)
−1. If µ − λ is a multiple of (1, 1, 1, . . .), then eλ = eµ on SU(n), so

ξλ = 1
∆
± es(λ+ρ) = 1

∆
± es(µ+ρ) = ξµ, and the characters are the same. Conversely,

if µ and λ are strictly dominant and don’t differ by a multiple of (1, 1, . . . , 1), then
they take on different values on the diagonal torus (one has a component eλ and the
other doesn’t), and cannot be equal.

Problem 6.4.2: (a) χ` = ξ`+1/∆ = (ε`+1 − ε−`−1)/(ε− ε−1) = ε` + ε`−2 + · · ·+ ε−`.

(b) Suppose that m ≤ ` Since the character of Vl ⊗ Vm is χlχm, so ξλ = ξlχm =
(ε`+1 − ε−(`+1))(εm + εm−2 + · · · + ε−m) Multiplying this out, we get the sum of the
ξk’s for k ranging from ` + m to `−m in steps of 2. This means that V` ⊗ Vm must
be the direct sum of those Vk’s.

Section 6.5

Problem 6.5.1: We started to work this problem in class. We have [X+, X−] = H,
[H,X+] = 2X+ and [H,X−] = −2X−. Pick an irreducible representation ρ and let
H̃ = ρ(H), X̃+ = ρ(X+) and X̃− = ρ(X−), so [X̃+, X̃−] = H̃, [H̃, X̃+] = 2X̃+ and
[H̃, X̃−] = −2X̃−. If v is an eigenvector of H̃ with eigenvalue λ, then

H̃X̃±v = (X̃±H̃ + [H̃, X̃±])v = (X̃±)(H̃ ± 2)v = (λ± 2)X̃±v,

so either X̃±v is an eigenvector with eigenvalue λ±2 or X̃±v = 0. We call X̃± raising
and lowering operators, or ladder operators.

Let ` be the largest eigenvalue of H̃, and let v` be the corresponding eigenvector.
Let v`−2 = X̃−v`, and define recursively vk−2 = X̃−vk. Since our representation is
finite-dimensional, the sequence v`, v`−2, . . . must eventually terminate in a vector v`′
with X̃−v`′ = 0.

Now consider the matrix C = H̃2+2X̃−X̃++2X̃+X̃− = H̃2+2H̃+4X̃−X̃+ = H̃2−



2H̃+4X̃+X̃−. (In quantum mechanics, H̃ is called 2J3, X̃± is called J±, and C = 4J2.
Also, the quantum number j is `/2.) You can check that [X̃±, C] = [H̃, C] = 0. This
makes C a g map. Since the representation ρ is irreducible, Schurr’s Lemma says
that C is multiplication by a constant. Since Cv` = (`2 + 2`)v (since X̃+v = 0), this
constant must be `2 + 2`. But Cv`′ = (`′2 − 2`′)v`′ , since X̃−v`′ = 0. This implies
that `′ = −`, so our vectors are v`, v`−2, . . . , v−`.

Since we have H̃vk = kvk and X̃−vk = vk−2, we just need to compute X̃+vk to
complete our representation. But X̃+vk = X̃+X̃−vk+2 = 1

4
(C − H̃2 + 2H̃)vk+2 =

1
4
(`(`+ 2)− k(k + 2))vk+2.

This is not QUITE the same as example 5, but it’s close. The only difference is
how we normalize the eigenvectors vk.

Problem 6.5.2. (a) Let Y ∈ SO(3), and let a(t) = exp(Y t). The velocity of a(t)x
at t = 0 is Y x, so the derivative of f(a(t)x) is

∑
i(Y x)i∂if =

∑
i,j Yijxj∂jf . Since

Y can be an arbitrary anti-symmetric matrix, this is zero for all Y and all x if and
only if xi∂jf = xj∂if for all pairs (i, j) and for all points x. Since exponential map
is onto, having f(ax) = f(x) for all a is equivalent to f(exp(Y t)x) = f(x) for all Y
and all t and all x, which is equivalent to the derivative with respect to t being zero.

(b) The solution as written to part (a) never uses the fact that we are working
specifically with SO(3), and applies equally well to SO(n).

Problem 6.5.3: (a) π±(iX) = 1
2
(π(iX) ± iπ(X)) = ±i1

2
(π(X) ∓ iπ(iX)) =

±i1
2
(π(X)± iπ(−iX)) = ±iπ±(X).

(b) This doesn’t seem to make any sense as written. Since (c) depends on (b) and
it seems we’re supposed to use (b) and (c) to get (d), I’m going to skip the rest of
the problem.

Problem 6.5.4. If you have a real representation ρ on g, define ρ̃(X + iY ) to be
ρ(X) + iρ(Y ) for X + iY ∈ g ⊕ ig. This is manifestly homolorphic. Conversely,
if we have a holomorphic representation ρ̃ of g ⊕ ig, we can restrict it to g to get
a representation ρ of g. It’s easy to see that these extensions and restrictions are
inverse maps, since (for the extension) ρ̃(X + i0) = ρ(X) and (for the restriction)
ρ(X) + iρ(Y ) = ρ̃(X) + iρ̃(Y ) = ρ̃(X + iY ). Equivalence is just conjugation by a
fixed matrix, and is preserved by this operation. Irreducibility is easy as long as we
are talking about complex subspaces of V . A complex subset is preserved by all X if
and only if it is preserved by all iY , if and only if it is preserved by all X + iY .

Problem 6.5.5: An arbitrary element of gC can be written as α = X + jY where
X, Y ∈ g. In other words, we’re reserving the letter i for complex multiplication
within bg, and define j(X, Y ) = (−Y,X) in bg ⊕ bg, so that X + jY is shorthand



for (X, Y ). Define α± = 1
2
α ∓ jiα. These are the ±i eigenspaces of the operator j.

Each eigenspace is naturally identified with g via the map X → (X + j0)±. In other
words, the complexification of a complex vector space is the direct sum of two copies
of that space, only with j acting by i on the first copy and −i on the second.

So far we’ve only used the fact that g is a complex vector space. Now we have
to check the the algebra operations are satisfied, namely that [α±, β±] = [α, β]± and
that [α±, β∓] = 0. Note that we have [X1 + jY1, X2 + jY2] = [X1, X2] − [Y1, Y2] +
j[X1, Y2] + j[Y1, X2].

[α±, β∓] = −[jα±, jβ∓] = −[±iα±,∓iβ∓] = −[α±, β∓]

so [α±, β±] = 0. We also compute, for α, β ∈ g:

[α+, β+] =
1

4
[α− jiα, β − jiβ] =

1

4
(2[α, β]− 2ji[α, β]) = [α, β]+

The calculation for [α−, β−] is similar.

By the way, here’s the simplest example of the complexification of a complex vector
space. Start with a 1 complex vector space, namely C1 with coordinate z. Think of
it as R2 with coordinates x and y, where z = x + iy. The cotangent space has basis
dx and dy. Now complexify this, by taking complex linear combinations of dx and
dy. That’s the same thing as taking arbitrary linear combinations of dz = dx + idy
and dz̄ = dx− idy.

Problem 6.5.6: (a) In SO(3), exp(iπH) = 1, so the eigenvalues of H must be even
integers. These are the representations with ` even. (In physics language, this means
that j = `/2 has to be an integer rather than a half-integer.)

(b) exp(ad/dx)f(x) =
∑

an

n!
f (n)(x). This equals f(x + a) if the function f is

analytic, so the exponential of d/dx must be a translation. However, the interval
(0, 1) is bounded – translate by more than 1 and you’re off the interval! In particular,
the translate of a bump function is zero. (Note: the bump function isn’t analytic,
but it is smooth.) Thus is doesn’t make sense to exponentiate d/dx on C∞(0, 1).

On C∞(R), however, we can define the translation operator Ttf(x) = f(x + t).
Since dTt/dt = T (d/dx) = (d/dx)T , we can reasonably say that Tt = exp(td/dx).
However, this exponentiation is NOT given by a power series, since Taylor series only
works for analytic functions, not for arbitrary smooth functions.

(c) Vermer modules are a bridge too far.


