Lie Groups, Problem Set # 2 Solutions

This week’s problems were all from the book, namely Section 2.1, problems 5, 6
and 9, and 2.2, problems 4, 5 and 7.

Problem 2.1.5: (a) First note that ij = k = —ji, so for any complex number a,
ja=ajand aj = ja. If ¢, = a+jB and g, = v+76, then ¢, = a+3j = a—j3, whose
matrix is the adjoint of the matrix of ¢,. Likewise, q1go = oy + jBv + ajd + jB50 =

3 . _ .. [ay—p0 —py—ad
(ay—9)+j(By+ad), whose matrix is (57 +ad Gy — 8o
of the matrix of ¢; and the matrix of ¢o. Since quaternionic multiplication is mapped
to multiplication of complex matrices, this gives a homomorphism from Sp(1) (aka
the unit quaternions) to the matrices of the given form with |a|? + |3]? = 1, and the
homomorphism is clearly 1-1. But by example 2 the image is precisely SU(2).

, which is the product

(b) If 4 = —~, then the matrix of v (call it M,) is anti-Hermitian, so it has
pure imaginary eigenvalues and orthogonal eigenvectors. By choosing the phases of
the two eigenvectors correctly, we can write M, = APDP~! where P € SU(2), A
é —0@> Likewise, we can write M; = PODPO_l,
so D = Py'M;Py. We then have M, = APPy'M;PyP~!. If we take a to be the
quaternion whose matrix is VAP, P!, then M, = MzM;M,, so v = aja.

is real and positive and D = (

Note that « is not uniquely defined. Replacing o’ = ¢/°a would work as well. This
ambiguity corresponds the the phase freedom we have in choosing the eigenvectors of
M,.

Problem 2.1.6: (a) n = h(3,R) is just the upper triangular matrices, since if
X is not upper-triangular, then exp(tX) ~ 1+ tX is not in the group for small ¢.
Notice that the three basis vectors for n (call them e,, eg and e,) have all pairwise
products equal to zero, except e,eg, which equals e,. In particular, the bracket of
any two matrices is a multiple of e, C h(3,R). (b) If X € n, then X® = 0, and
exp(X) =1+ X+ X?/2is in H(3, R). Likewise, if a € H(3, R), then (a —1)3 =0, so
log(a) = a—1—(a—1)?/2, which is easily seen to be in (3, R). (c) The brackets in n
are: [eq, eg] = €, [ea, €4] = [e3,e,] = 0. Note that [X,[Y, Z]] =0 for any X,Y,Z € n.

0 Y1 Ys 0 1 X3
HY=10 0 o Jand X=|0 0 x5 |,then Ad(exp(X))Y =Y +[X,Y] =
0 0 O 0 0 0

Y + (y129 — y221)e,, since all higher-order brackets are zero. The adjoint orbit of ¥’
is therefore: (i) Y itself, if 3 = yo = 0. In this case Y is proportional to e, and
commutes with all elements of the group. (ii) Y plus an arbitrary multiple of e., if



y1 # 0 or ya # 0.

Problem 2.1.9: (a) In the Gram-Schmidt process we construct an orthogonal basis
{wy,ws,...,w,} from an arbitrary basis {vq,...,v,}. in such a way that each wy
equals v, minus a linear combination of the previous w;’s. Turning things around,
each v;, equals wy, plus a linear combination of the previous w;’s. Let W be a matrix
whose columns are the w’s, and V' be a matrix whose columns are the v’s. Then we
have V = WZ;, where b is an upper triangular matrix with 1’s on the diagonal. We can

further write W = Ud, where d is diagonal, with positive entries, and the columns of
U are orthonormal. Setting b = db, we have V' = Ub, with U € O(n) and b € B.

Note that the Gram-Schmidt process is deterministic. Each basis {v;} is associated
with exactly one pair (U, b), and of course each pair (U, b) is associated with one basis
— the columns of V' = Ub. This shows that every invertible matrix can be uniquely
written as the product of an orthogonal matrix and an upper-triangular matrix with
positive diagonal entries.

(b) Since b has positive determinant, each element of GL(n,R), is associated with
a unique pair (U, b) with U € SO(n) and b € B. Note that B is convex, and hence
contractible (and connected). Likewise, SO(n) is connected. Given Vi = Upby and
Vi = Ujby, just pick a path U, from Uy to U; and a path b; from by to b; and set
Vi = Ub;. As for analyticity, we know that exp : so(n) — SO(n) is onto. Pick
elements Xy and X in so(n) such that exp(Xy) = Uy and exp(X;) = Ui, and let
Uy = exp(tXo + (1 — ¢)X1). Then pick b = t(b1) + (1 — t)bo.

Problem 2.2.4: (a) The only sub-algebras of so(3) are either 1-dimensional (with a
trivial bracket), or the full 3-dimensional algebra. To see this, recall that the bracket
in s0(3) is essentially the same thing as the cross product in R3. If X and Y are
hnearly independent, then [X,Y] Corresponds to a vector orthogonal to both X and
Y, and hence linearly independent of {X,Y}. Thus if any algebra has dimension
greater than 1, it must have dimension 3.

(b) Even though si(2,C) is the complexification of so(3), the set of available Lie
sub-algebras is actually MORE than the complexification of the answer to (a). There
exist 2-dimensional subalgebras, all of which are conjugate to the span of H and X .
To see that these are the ONLY 2-dimensional subalgebras, we argue as follows:

Suppose we have a basis for a 2-D subalgebra, spanned by matrices A and B. Then
[A, B] is a linear combination of A and B. By calling this combination our second basis
vector and rescaling our vectors, we can assume that [A, B] = 2B. If B is semi-simple
and has eigenvalues £, then exp(2rB/\) = 1, so Ad(exp(2rB/)\))A = A. But by
Baker-Campbell-Haussdorff, Ad(exp(Bt)A = A+2Bt. So B must not be semi-simple,



which implies it must be nilpotent, hence conjugate to X . The equation [A, B] = 2B
then implies that A = H plus a multiple of B, so our algebra is spanned by H and
X,

Problem 2.2.5. First consider the 1-dimensional sub-algebras. This is basically
classifying 2 x 2 traceless non-zero real matrices up to scaling and conjugation. There
are three classes, up to conjugacy by SL(2, R): (i) Those with real eigenvalues (and
real eigenvectors), conjugate to (a multiple of) H, (ii) Those with imaginary eigen-
values, conjugate (with a real change-of-basis) to a multiple of X_ — X, and the
non-diagonalizable elements, conjugate to X . Next, the 2-dimensional sub-algebras.
As with sl(2,C), we have the span of A and B, with [A, B] = 2B and B = X (up to
conjugacy). But then A = H plus a multiple of X, so we have the span of H, X .
In other words, all 2-dimensional sub-algebras are conjugate to the upper triangu-
lars. (b) As abstract algebras, all 1-dimensional sub-algebras are isomorphic, and
there is only one 2-dimensional algebra (up to conjugation), so all 2D sub-algebras
are isomorphic.

Problem 2.2.7. If a(t) is a family of automorphisms, then a(x - y) = (az) - (ay).
Taking a derivative with respect to ¢t at ¢ = 0 and a =identity, we get D(z - y) =
(Dx)-y+z-(Dy), where D = a/(0). Thus D is a derivation. Conversely, suppose that
D is a derivation. Let a(t) = exp(Dt), so @’ = aD. Then d/dt[(a(z-y) — (ax)- (ay)] =
aD(z-y) — (aDx)- (ay) — (azx) - (aDy) = a(Dz-y+x- Dy) —a(Dz-y) —a(x- Dy) = 0,
so a(x - y) — (ax) - (ay) is constant. Since it is zero at t = 0, it is zero for all ¢.



