This week's problems were all from the book, namely Section 2.1, problems 5, 6 and 9, and 2.2, problems 4, 5 and 7.

Problem 2.1.5: (a) First note that ij = k = -ji, so for any complex number α , $j\alpha = \bar{\alpha}j$ and $\alpha j = j\bar{\alpha}$. If $q_1 = \alpha + j\beta$ and $q_2 = \gamma + j\delta$, then $\bar{q}_1 = \bar{\alpha} + \bar{\beta}\bar{j} = \bar{\alpha} - j\beta$, whose matrix is the adjoint of the matrix of q_1 . Likewise, $q_1q_2 = \alpha\gamma + j\beta\gamma + \alpha j\delta + j\beta j\delta = (\alpha\gamma - \bar{\beta}\delta) + j(\beta\gamma + \bar{\alpha}\delta)$, whose matrix is $\begin{pmatrix} \alpha\gamma - \bar{\beta}\delta & -\bar{\beta}\bar{\gamma} - \alpha\bar{\delta} \\ \beta\gamma + \bar{\alpha}\delta & \bar{\alpha}\bar{\gamma} - \beta\bar{\delta} \end{pmatrix}$, which is the product of the matrix of q_1 and the matrix of q_2 . Since quaternionic multiplication is mapped to multiplication of complex matrices, this gives a homomorphism from Sp(1) (aka the unit quaternions) to the matrices of the given form with $|\alpha|^2 + |\beta|^2 = 1$, and the homomorphism is clearly 1–1. But by example 2 the image is precisely SU(2).

(b) If $\bar{\gamma}=-\gamma$, then the matrix of γ (call it M_{γ}) is anti-Hermitian, so it has pure imaginary eigenvalues and orthogonal eigenvectors. By choosing the phases of the two eigenvectors correctly, we can write $M_{\gamma}=\lambda PDP^{-1}$, where $P\in SU(2), \lambda$ is real and positive and $D=\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. Likewise, we can write $M_{j}=P_{0}DP_{0}^{-1}$, so $D=P_{0}^{-1}M_{j}P_{0}$. We then have $M_{\gamma}=\lambda PP_{0}^{-1}M_{j}P_{0}P^{-1}$. If we take α to be the quaternion whose matrix is $\sqrt{\lambda}P_{0}P^{-1}$, then $M_{\gamma}=M_{\bar{\alpha}}M_{j}M_{\alpha}$, so $\gamma=\bar{\alpha}j\alpha$.

Note that α is not uniquely defined. Replacing $\alpha' = e^{j\phi}\alpha$ would work as well. This ambiguity corresponds the phase freedom we have in choosing the eigenvectors of M_{γ} .

Problem 2.1.6: (a) $\mathbf{n} = \mathbf{h}(\mathbf{3}, \mathbb{R})$ is just the upper triangular matrices, since if X is not upper-triangular, then $\exp(tX) \approx 1 + tX$ is not in the group for small t. Notice that the three basis vectors for \mathbf{n} (call them e_{α} , e_{β} and e_{γ}) have all pairwise products equal to zero, except $e_{\alpha}e_{\beta}$, which equals e_{γ} . In particular, the bracket of any two matrices is a multiple of $e_{\gamma} \subset h(3,\mathbb{R})$. (b) If $X \in \mathbf{n}$, then $X^3 = 0$, and $\exp(X) = 1 + X + X^2/2$ is in H(3,R). Likewise, if $a \in H(3,R)$, then $(a-1)^3 = 0$, so $\log(a) = a - 1 - (a - 1)^2/2$, which is easily seen to be in h(3,R). (c) The brackets in \mathbf{n} are: $[e_{\alpha}, e_{\beta}] = e_{\gamma}$, $[e_{\alpha}, e_{\gamma}] = [e_{\beta}, e_{\gamma}] = 0$. Note that [X, [Y, Z]] = 0 for any $X, Y, Z \in \mathbf{n}$.

If
$$Y = \begin{pmatrix} 0 & y_1 & y_3 \\ 0 & 0 & y_2 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $X = \begin{pmatrix} 0 & x_1 & x_3 \\ 0 & 0 & x_2 \\ 0 & 0 & 0 \end{pmatrix}$, then $Ad(\exp(X))Y = Y + [X, Y] = \exp(X)$

 $Y + (y_1x_2 - y_2x_1)e_{\gamma}$, since all higher-order brackets are zero. The adjoint orbit of Y is therefore: (i) Y itself, if $y_1 = y_2 = 0$. In this case Y is proportional to e_{γ} , and commutes with all elements of the group. (ii) Y plus an arbitrary multiple of e_{γ} , if

Problem 2.1.9: (a) In the Gram-Schmidt process we construct an orthogonal basis $\{w_1, w_2, \ldots, w_n\}$ from an arbitrary basis $\{v_1, \ldots, v_n\}$. in such a way that each w_k equals v_k minus a linear combination of the previous w_j 's. Turning things around, each v_k equals w_k plus a linear combination of the previous w_j 's. Let W be a matrix whose columns are the w's, and V be a matrix whose columns are the v's. Then we have $V = W\tilde{b}$, where \tilde{b} is an upper triangular matrix with 1's on the diagonal. We can further write W = Ud, where d is diagonal, with positive entries, and the columns of U are orthonormal. Setting $b = d\tilde{b}$, we have V = Ub, with $U \in O(n)$ and $b \in B$.

Note that the Gram-Schmidt process is deterministic. Each basis $\{v_j\}$ is associated with exactly one pair (U, b), and of course each pair (U, b) is associated with one basis – the columns of V = Ub. This shows that every invertible matrix can be uniquely written as the product of an orthogonal matrix and an upper-triangular matrix with positive diagonal entries.

(b) Since b has positive determinant, each element of $GL(n, \mathbb{R})_+$ is associated with a unique pair (U, b) with $U \in SO(n)$ and $b \in B$. Note that B is convex, and hence contractible (and connected). Likewise, SO(n) is connected. Given $V_0 = U_0b_0$ and $V_1 = U_1b_1$, just pick a path U_t from U_0 to U_1 and a path b_t from b_0 to b_1 and set $V_t = U_tb_t$. As for analyticity, we know that $\exp : so(n) \to SO(n)$ is onto. Pick elements X_0 and X_1 in so(n) such that $\exp(X_0) = U_0$ and $\exp(X_1) = U_1$, and let $U_t = \exp(tX_0 + (1-t)X_1)$. Then pick $b_t = t(b_1) + (1-t)b_0$.

Problem 2.2.4: (a) The only sub-algebras of so(3) are either 1-dimensional (with a trivial bracket), or the full 3-dimensional algebra. To see this, recall that the bracket in so(3) is essentially the same thing as the cross product in \mathbb{R}^3 . If X and Y are linearly independent, then [X,Y] corresponds to a vector orthogonal to both \vec{X} and \vec{Y} , and hence linearly independent of $\{\vec{X},\vec{Y}\}$. Thus if any algebra has dimension greater than 1, it must have dimension 3.

(b) Even though sl(2, C) is the complexification of so(3), the set of available Lie sub-algebras is actually MORE than the complexification of the answer to (a). There exist 2-dimensional subalgebras, all of which are conjugate to the span of H and X_+ . To see that these are the ONLY 2-dimensional subalgebras, we argue as follows:

Suppose we have a basis for a 2-D subalgebra, spanned by matrices A and B. Then [A, B] is a linear combination of A and B. By calling this combination our second basis vector and rescaling our vectors, we can assume that [A, B] = 2B. If B is semi-simple and has eigenvalues $\pm \lambda$, then $\exp(2\pi B/\lambda) = 1$, so $Ad(\exp(2\pi B/\lambda))A = A$. But by Baker-Campbell-Haussdorff, $Ad(\exp(Bt)A = A + 2Bt)$. So B must not be semi-simple,

which implies it must be nilpotent, hence conjugate to X_+ . The equation [A, B] = 2B then implies that A = H plus a multiple of B, so our algebra is spanned by H and X_+ .

Problem 2.2.5. First consider the 1-dimensional sub-algebras. This is basically classifying 2×2 traceless non-zero real matrices up to scaling and conjugation. There are three classes, up to conjugacy by SL(2,R): (i) Those with real eigenvalues (and real eigenvectors), conjugate to (a multiple of) H, (ii) Those with imaginary eigenvalues, conjugate (with a real change-of-basis) to a multiple of $X_- - X_+$, and the non-diagonalizable elements, conjugate to X_+ . Next, the 2-dimensional sub-algebras. As with $sl(2,\mathbb{C})$, we have the span of A and B, with [A,B]=2B and $B=X_+$ (up to conjugacy). But then A=H plus a multiple of X_+ , so we have the span of H,X_+ . In other words, all 2-dimensional sub-algebras are conjugate to the upper triangulars. (b) As abstract algebras, all 1-dimensional sub-algebras are isomorphic, and there is only one 2-dimensional algebra (up to conjugation), so all 2D sub-algebras are isomorphic.

Problem 2.2.7. If a(t) is a family of automorphisms, then $a(x \cdot y) = (ax) \cdot (ay)$. Taking a derivative with respect to t at t = 0 and a =identity, we get $D(x \cdot y) = (Dx) \cdot y + x \cdot (Dy)$, where D = a'(0). Thus D is a derivation. Conversely, suppose that D is a derivation. Let $a(t) = \exp(Dt)$, so a' = aD. Then $d/dt[(a(x \cdot y) - (ax) \cdot (ay)] = aD(x \cdot y) - (aDx) \cdot (ay) - (ax) \cdot (aDy) = a(Dx \cdot y + x \cdot Dy) - a(Dx \cdot y) - a(x \cdot Dy) = 0$, so $a(x \cdot y) - (ax) \cdot (ay)$ is constant. Since it is zero at t = 0, it is zero for all t.